Mechanical Properties in Individual Carbon Nanofibers at High Temperature and High Pressure by Molecular Dynamics Simulations

2008 ◽  
Author(s):  
Frederic Sansoz ◽  
Jingjun Gu
RSC Advances ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 5507-5515
Author(s):  
Liang Song ◽  
Feng-Qi Zhao ◽  
Si-Yu Xu ◽  
Xue-Hai Ju

The bimolecular and fused ring compounds are found in the high-temperature pyrolysis of NONA using ReaxFF molecular dynamics simulations.


2013 ◽  
Vol 4 ◽  
pp. 429-440 ◽  
Author(s):  
Hlengisizwe Ndlovu ◽  
Alison E Ashcroft ◽  
Sheena E Radford ◽  
Sarah A Harris

We examine how the different steric packing arrangements found in amyloid fibril polymorphs can modulate their mechanical properties using steered molecular dynamics simulations. Our calculations demonstrate that for fibrils containing structural defects, their ability to resist force in a particular direction can be dominated by both the number and molecular details of the defects that are present. The simulations thereby suggest a hierarchy of factors that govern the mechanical resilience of fibrils, and illustrate the general principles that must be considered when quantifying the mechanical properties of amyloid fibres containing defects.


2010 ◽  
Vol 114 (8) ◽  
pp. 3522-3530 ◽  
Author(s):  
Carlos F. Sanz-Navarro ◽  
Per-Olof Åstrand ◽  
De Chen ◽  
Magnus Rønning ◽  
Adri C. T. van Duin ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (33) ◽  
pp. 28121-28129 ◽  
Author(s):  
Yanan Xu ◽  
Mingchao Wang ◽  
Ning Hu ◽  
John Bell ◽  
Cheng Yan

The mechanical properties of titanium dioxide (TiO2) nanotubes are studied based on molecular dynamics simulations.


Sign in / Sign up

Export Citation Format

Share Document