In-situ TEM investigation of deformation behavior of metallic glass pillars

2009 ◽  
Vol 1185 ◽  
Author(s):  
Changqiang Chen ◽  
Yutao Pei ◽  
Jeff De Hosson

AbstractWe show results of in situ TEM (Transmission electron microscope) quantitative investigations on the compression behaviors of amorphous micropillars fabricated by focused ion beam from Cu47Ti33Zr11Ni6Sn2Si1 metallic glass (MG) ribbon. Pillars with well defined gauge sections and tip diameter ranging from 100 nm to 640 nm are studied. Quantitative compression tests were performed by a recently developed Picoindenter TEM holder, with the evolution of individual shear bands monitored in real time in TEM. It is found that the deformation of the MG pillars at the present size domain is still dominated by discrete shear banding as demonstrated by intermittent events in the load-displacement curves. However, the frequency, amplitude and distribution of these shear banding events are clearly size dependent at submicrometer scale, leading to an apparently transition in deformation mode from highly localized inhomogeneous deformation to less localized and more distributed deformation with decreasing pillars diameter. Deformation of a 105 nm diameter pillar having rounded tips is characterized with fully homogeneous bulge at the initial stage of deformation, indicating prompting effect of multi-axial stress state on transition to fully homogeneous deformation.

1996 ◽  
Vol 439 ◽  
Author(s):  
Miyoko Tanaka ◽  
Kazuo Furuya ◽  
Tetsuya Saito

AbstractFocused ion beam (FIB) irradiation of a thin Ni2Si layer deposited on a Si substrate was carried out and studied using an in-situ transmission electron microscope (in-situ TEM). Square areas on sides of 4 by 4 and 9 by 9 μm were patterned at room temperature with a 25keV Ga+-FIB attached to the TEM. The structural changes of the films indicate a uniform milling; sputtering of the Ni2Si layer and the damage introducing to the Si substrate. Annealing at 673 K results in the change of the Ni2Si layer into an epitaxial NiSi2 layer outside the FIB irradiated area, but several precipitates appear around the treated area. Precipitates was analyzed by energy dispersive X-ray spectroscopy (EDS). Larger amount of Ni than the surrounding matrix was found in precipitates. Selected area diffraction (SAD) patterns of the precipitates and the corresponding dark field images imply the formation of a Ni rich silicide. The relation between the FIB tail and the precipitation is indicated.


1996 ◽  
Vol 441 ◽  
Author(s):  
K. Tsujimoto ◽  
S. Tsuji ◽  
H. Saka ◽  
K. Kuroda ◽  
H. Takatsuji ◽  
...  

AbstractThe recent attention paid to stress migration of aluminum (Al) electrodes in thin-film transistor liquid crystal display (TFT-LCD) applications indicates that wiring materials with low electrical resistivities are of considerable interest for their potential use in higher-resolution displays. In this paper, we firstly describe how as-grown Al whiskers on Al electrodes fabricated on a LCD-grade glass substrate can be characterized by means of a high-voltage transmission electron microscope (HV-TEM) operated at 1 MV. The whiskers ranging from 300 to 400 nm in diameter are sufficient to be transparent to high-voltage electrons. This allows detailed observation of whisker characteristics such as its morphology and crystallography. In most cases, the as-grown Al whiskers in our study had straight rod shapes, and could be regarded as single crystals. Secondly, we report on the in-situ fabrication and observation of Al whiskers at elevated temperature with the HV-TEM. Since relatively thick TEM samples (up to about 1 mm) can be set on a sample holder in the HV-TEM, various growth stages of Al whiskers can be investigated under various heating conditions. Finally, we demonstrate a TEM sample preparation method for the cross-section of an individual Al whisker, using focused ion beam (FIB) etching. This technique makes it possible to reduce the thickness of an Al whisker close to the root. Both bright- and dark-field TEM images provide nanostructural information on the whisker/Al thin-film interface.


2016 ◽  
Vol 850 ◽  
pp. 722-727 ◽  
Author(s):  
Hui Wang ◽  
Shang Gang Xiao ◽  
Qiang Xu ◽  
Tao Zhang ◽  
Henny Zandbergen

The preparation of thin lamellas by focused ion beam (FIB) for MEMS-based in situ TEM experiments is time consuming. Typically, the lamellas are of ~5μm*10μm and have a thickness less than 100nm. Here we demonstrate a fast lamellas’ preparation method using special fast cutting by FIB of samples prepared by conventional TEM sample preparation by argon ion milling or electrochemical polishing methods. This method has been applied successfully on various materials, such as ductile metallic alloy Ti68Ta27Al5, brittle ceramics K0.5Na0.5NbO3-6%LiNbO3 and semiconductor Si. The thickness of the lamellas depends on the original TEM sample.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. A. Loginov ◽  
D. A. Sidorenko ◽  
A. S. Orekhov ◽  
E. A. Levashov

AbstractThe procedure for in situ TEM measurements of bonding strength (adhesion) between diamond and the metal matrix using a Hysitron PI 95 TEM Picoindenter holder for mechanical tests and Push-to-Pull devices was proposed. For tensile tests, dog-bone shaped lamellae 280–330 nm thick and ~ 2.5 µm long were used as objects of study. The lamellae were manufactured using the focused ion beam technology from the metal–diamond interface of diamond-containing composite material with a single-phase binder made of Fe–Co–Ni alloy. The experimentally determined bonding strength was 110 MPa.


2007 ◽  
Vol 22 (2) ◽  
pp. 368-373 ◽  
Author(s):  
W.H. Jiang ◽  
F.X. Liu ◽  
H.H. Liao ◽  
H. Choo ◽  
P.K. Liaw

Using an infrared camera, the plastic deformation of a relaxed Zr52.5Cu17.9Ni14.6Al10.0Ti5.0 bulk-metallic glass in a moderately high strain rate compression was observed in situ. The specimen exhibits an inhomogeneous deformation, which is manifested by serrated plastic flow, shear banding, and obvious work softening. Shear-banding operations were observed throughout the plastic deformation. Shear-banding operations started before the nominal yielding; shear bands could not block each other, but their interaction seems to accelerate the plastic deformation. A significant increase in the specimen’s temperature was observed due to shear banding.


2015 ◽  
Vol 21 (S3) ◽  
pp. 1403-1404
Author(s):  
Andrew Lang ◽  
Wayne Harlow ◽  
Michael Jablonski ◽  
James Hart ◽  
Christopher Barr ◽  
...  

2010 ◽  
Vol 25 (3) ◽  
pp. 563-575 ◽  
Author(s):  
Yong Yang ◽  
Jianchao Ye ◽  
Jian Lu ◽  
Qing Wang ◽  
Peter K. Liaw

In this article, the shear-banding behavior in bulk metallic-glasses (BMGs) is studied using a focused ion beam (FIB)-based nanoindentation method, which involves cylindrical nanoindentation of a FIB-milled BMG microlamella and is capable of revealing the subsurface shear-band patterns down to the submicron scale. The results of the current study on a Zr-based BMG clearly show that short shear bands, with the lengths of a few hundred nanometers, could be severely kinked before growing into a longer one, which implies that structural heterogeneity plays an important role in the microplasticity of BMGs. Furthermore, through the three-dimensional finite-element simulation combined with the theoretical calculation based on the Mohr–Coulomb law, it is found that the yield strengths exhibit a large scatter as a consequence of the structural heterogeneity when microplasticity occurs in the Zr-based BMG, which is consistent with our recent findings obtained from the microcompression experiments.


Author(s):  
Nathan R. Velez ◽  
Frances I. Allen ◽  
Mary Ann Jones ◽  
Jenn Donohue ◽  
Wei Li ◽  
...  

Abstract A method for small-scale testing and imaging of freestanding, microtomed polymer films using a push-to-pull device is presented. Central to this method was the development of a sample preparation technique which utilized solvents at cryogenic temperatures to transfer and deposit delicate thin films onto the microfabricated push-to-pull devices. The preparation of focused ion beam (FIB)-milled tensile specimens enabled quantitative in situ TEM tensile testing, but artifacts associated with ion and electron beam irradiation motivated the development of a FIB-free specimen preparation method. The FIB-free method was enabled by the design and fabrication of oversized strain-locking push-to-pull devices. An adaptation for push-to-pull devices to be compatible with an instrumented nanoindenter expanded the testing capabilities to include in situ heating. These innovations provided quantitative mechanical testing, postmortem TEM imaging, and the ability to measure the glass transition temperature, via dynamic mechanical analysis, of freestanding polymer films. Results for each of these mentioned characterization methods are presented and discussed in terms of polymer nanomechanics. Graphic Abstract


1997 ◽  
Vol 480 ◽  
Author(s):  
M. A. Wall ◽  
T. W. Barbee

AbstractThe success of in-situ transmission electron microscopy experimentation is often dictated by proper specimen preparation. We report here a novel technique permitting the production of crosssectioned tensile specimens of multilayered films for in-situ deformation studies. Of primary importance in the development of this technique is the production of an electron transparent microgauge section using focused ion beam technology. This micro-gauge section predetermines the position at which plastic deformation is initiated; crack nucleation, growth and failure are then subsequently observed.


Author(s):  
Hagit Barda ◽  
Irina Geppert ◽  
Avraham Raz ◽  
Rémy Berthier

Abstract An experimental setup is presented, that allows in-situ Transition Electron Microscopy (TEM) investigation of void formation and growth within fully embedded interconnect structure, as a response to an external bias. A special TEM holder is employed to perform in-situ I-V measurements across the Via, simultaneously monitoring the morphological and chemical changes surrounding the void. This work presents in detail a Focused Ion Beam (FIB) based sample preparation method that allows the analysis of a Cu single Via structure found in the advanced microelectronic 14nm FinFET technology, as well as preliminary TEM observations.


Sign in / Sign up

Export Citation Format

Share Document