Influence of Hydrogen on Growth of Carbon Nanotubes

2009 ◽  
Vol 1204 ◽  
Author(s):  
Maxim Belov ◽  
Andrey Knizhnik ◽  
Irina Lebedeva ◽  
Alexey Gavrikov ◽  
Boris Potapkin ◽  
...  

AbstractThe influence of hydrogen on the growth of carbon nanostructures in thermal chemical vapor deposition is studied using density functional theory calculations. It is shown that hydrogen adatoms effectively bind to edges of graphitic structures on the Ni (111) surface. This is found to result in a significant decrease of the rate of carbon attachment to the growing graphitic structures. However, it is also demonstrated that the edges of graphitic structures which are attached to steps on the Ni surface should not be hydrogenated.

Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Myung Gwan Hahm ◽  
Young-Kyun Kwon ◽  
Ahmed Busnaina ◽  
Yung Joon Jung

Due to their unique one-dimensional nanostructure along with excellent mechanical, electrical, and optical properties, carbon nanotubes (CNTs) become a promising material for diverse nanotechnology applications. However, large-scale and structure controlled synthesis of CNTs still have many difficulties due to the lack of understanding of the fundamental growth mechanism of CNTs, as well as the difficulty of controlling atomic-scale physical and chemical reactions during the nanotube growth process. Especially, controlling the number of graphene wall, diameter, and chirality of CNTs are the most important issues that need to be solved to harness the full potential of CNTs. Here we report the large-scale selective synthesis of vertically aligned single walled carbon nanotubes (SWNTs) and double walled carbon nanotubes (DWNTs) by controlling the size of catalyst nanoparticles in the highly effective oxygen assisted thermal chemical vapor deposition (CVD) process. We also demonstrate a simple but powerful strategy for synthesizing ultrahigh density and diameter selected vertically aligned SWNTs through the precise control of carbon flow during a thermal CVD process.


Sign in / Sign up

Export Citation Format

Share Document