Correlating Nanoparticle Dispersion to Surface Mechanical Properties of TiO2/Polymer Composites

2009 ◽  
Vol 1224 ◽  
Author(s):  
Yongyan Pang ◽  
Stephanie S. Watson ◽  
Aaron M. Forster ◽  
Lipiin Sung

AbstractThe objective of this study is to characterize the nanoparticle dispersion and to investigate its effect on the surface mechanical properties of nanoparticle-polymer systems. Two types of TiO2 nanoparticles were chosen to mix in two polymeric matrices: solvent-borne acrylic urethane (AU) and water-borne butyl-acrylic styrene latex (latex) coatings. Nanoparticle dispersion was characterized using laser scanning confocal microscopy. Overall, Particle A (PA, without surface treatment) dispersed better than Particle B (PB, organic treatment) in both systems. The AU-PA system exhibited the best dispersion of the four systems, however PB forms big clusters in both of the matrices. Surface mechanical properties, such as surface modulus at micron and sub-micron length scales were determined from depth sensing indentation equipped with a pyramidal tip or a conical tip. The surface mechanical properties were strongly affected by the dispersion of nanoparticle clusters, and a good correlation was found between dispersion of nanoparticle clusters near surface and the modulus-depth mapping using a pyramid tip.

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 262
Author(s):  
Mohammed Ali ◽  
David Porter ◽  
Jukka Kömi ◽  
Mamdouh Eissa ◽  
Hoda El Faramawy ◽  
...  

The effect of electroslag remelting (ESR) with CaF2-based synthetic slag on the microstructure and mechanical properties of three as-quenched martensitic/martensitic-bainitic ultrahigh-strength steels with tensile strengths in the range of 1250–2000 MPa was investigated. Ingots were produced both without ESR, using induction furnace melting and casting, and with subsequent ESR. The cast ingots were forged at temperatures between 1100 and 950 °C and air cooled. Final microstructures were investigated using laser scanning confocal microscopy, field emission scanning electron microscopy, electron backscatter diffraction, electron probe microanalysis, X-ray diffraction, color etching, and micro-hardness measurements. Mechanical properties were investigated through measurement of hardness, tensile properties and Charpy-V impact toughness. The microstructures of the investigated steels were mainly auto-tempered martensite in addition to small fractions of retained austenite and bainite. Due to the consequences of subtle modifications in chemical composition, ESR had a considerable impact on the final microstructural features: Prior austenite grain, effective martensite grain, and lath sizes were refined by up to 52%, 38%, and 28%, respectively. Moreover, the 95th percentiles in the cumulative size distribution of the precipitates decreased by up to 18%. However, ESR had little, if any, the effect on microsegregation. The variable effects of ESR on mechanical properties and how they depend on the initial steel composition are discussed.


2006 ◽  
Vol 47 ◽  
pp. 82-87 ◽  
Author(s):  
F. Capel ◽  
M.A. Madre ◽  
A. Sotelo ◽  
M. Mora ◽  
J.C. Diez ◽  
...  

Vitreous cylinders with compositions Bi2-xPbxSr2CaCu2Oy, (x = 0 and 0.4) were prepared and used as precursors to fabricate textured bars through a Laser Floating Zone melting method (LFZ). The resulting textured cylindrical bars were annealed and were mechanically characterized through mechanical strength, σ, Young modulus, E, Vickers hardness, H, and Weibull parameters, S0 and m. The study of the mechanisms controlling the fracture process was made by means of the fractographical analysis using Laser Scanning Confocal Microscopy (LSCM). Finally, the microstructure was determined and correlated with the mechanical properties.


2018 ◽  
Vol 786 ◽  
pp. 10-22 ◽  
Author(s):  
Mohammed Ali ◽  
David A. Porter ◽  
Jukka I. Kömi ◽  
Mamdouh Eissa ◽  
Hoda El Faramawy ◽  
...  

The cleanness, microstructure and mechanical properties of a newly developed CrNiMoWMnV ultrahigh-strength steel with and without electroslag refining (ESR) with 70% CaF2, 15% Al2O3 and 15% CaO have been studied. This steel was designed and melted in an air induction furnace followed by refining using ESR. Cast ingots with and without ESR were forged at temperatures in the range 1100 - 950 °C. Laser scanning confocal microscopy, field emission scanning electron microscopy electron back scattering diffraction, electron probe microanalysis and X-ray diffraction have been used to investigate the microstructure and non-metallic inclusions (NMIs) of forged ingots produced with and without ESR. Hardness, tensile and Charpy-V impact tests were performed. ESR reduced the total impurity level i.e. O%+ N%+ S% by 26 % and the area fractions and numbers of NMIs by 17% and 7% respectively. The NMIs are classified into four major classes: oxides, sulphides, nitrides and complex multiphase inclusions. The microstructure of the forged and air-cooled bars consisted of martensite with a small fraction of distributed retained austenite, a very small fraction of bainite and finely distributed precipitates. The reduction of impurity levels combined with the microstructural changes brought about by the changes in the chemical composition meant that ESR resulted in a significant improvement in some mechanical properties and a marginal improvement in others.


Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


Author(s):  
Hakan Ancin

This paper presents methods for performing detailed quantitative automated three dimensional (3-D) analysis of cell populations in thick tissue sections while preserving the relative 3-D locations of cells. Specifically, the method disambiguates overlapping clusters of cells, and accurately measures the volume, 3-D location, and shape parameters for each cell. Finally, the entire population of cells is analyzed to detect patterns and groupings with respect to various combinations of cell properties. All of the above is accomplished with zero subjective bias.In this method, a laser-scanning confocal light microscope (LSCM) is used to collect optical sections through the entire thickness (100 - 500μm) of fluorescently-labelled tissue slices. The acquired stack of optical slices is first subjected to axial deblurring using the expectation maximization (EM) algorithm. The resulting isotropic 3-D image is segmented using a spatially-adaptive Poisson based image segmentation algorithm with region-dependent smoothing parameters. Extracting the voxels that were labelled as "foreground" into an active voxel data structure results in a large data reduction.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 861
Author(s):  
Jacopo Cardellini ◽  
Arianna Balestri ◽  
Costanza Montis ◽  
Debora Berti

In the past decade(s), fluorescence microscopy and laser scanning confocal microscopy (LSCM) have been widely employed to investigate biological and biomimetic systems for pharmaceutical applications, to determine the localization of drugs in tissues or entire organisms or the extent of their cellular uptake (in vitro). However, the diffraction limit of light, which limits the resolution to hundreds of nanometers, has for long time restricted the extent and quality of information and insight achievable through these techniques. The advent of super-resolution microscopic techniques, recognized with the 2014 Nobel prize in Chemistry, revolutionized the field thanks to the possibility to achieve nanometric resolution, i.e., the typical scale length of chemical and biological phenomena. Since then, fluorescence microscopy-related techniques have acquired renewed interest for the scientific community, both from the perspective of instrument/techniques development and from the perspective of the advanced scientific applications. In this contribution we will review the application of these techniques to the field of drug delivery, discussing how the latest advancements of static and dynamic methodologies have tremendously expanded the experimental opportunities for the characterization of drug delivery systems and for the understanding of their behaviour in biologically relevant environments.


2001 ◽  
Vol 34 (15) ◽  
pp. 5186-5191 ◽  
Author(s):  
Hiroshi Jinnai ◽  
Hiroshi Yoshida ◽  
Kohtaro Kimishima ◽  
Yoshinori Funaki ◽  
Yoshitsugu Hirokawa ◽  
...  

1994 ◽  
Vol 42 (11) ◽  
pp. 1413-1416 ◽  
Author(s):  
S L Erlandsen ◽  
E M Rasch

We investigated direct measurement of the DNA content of the parasitic intestinal flagellate Giardia lamblia through quantitation by Feulgen microspectrophotometry and also by visualization of Feulgen-stained DNA chromosomes within dividing cells by laser scanning confocal microscopy. Individual trophozoites of Giardia (binucleate) contained 0.144 +/- 0.018 pg of DNA/cell or 0.072 pg DNA/nucleus. Giardia lamblia cysts (quadranucleate) contained 0.313 +/- 0.003 pg DNA or 0.078 pg DNA/nucleus. The genome size (C) value per nucleus ranged between 6.5-7.1 x 10(7) BP for trophozoites and cysts, respectively. Confocal microscopic examination of Giardia trophozoites undergoing binary fission revealed five chromosome-like bodies within each nucleus. Further information about genome size and DNA content within different Giardia species may help to clarify the pivotal role of these primitive eukaryotic cells in evolutionary development.


2014 ◽  
Vol 926-930 ◽  
pp. 1124-1127
Author(s):  
Zhen Xun Jin ◽  
Li Li Zhang ◽  
Yan Wang ◽  
Lin Chuan Zeng ◽  
Yang Yu ◽  
...  

The aim of this study is to investigate the effects and mechanism of chloroquine (CQ) on the apoptosis induced by cisplatin in human gastric cancer BGC823 cells. MTT assay was used to detect the state of cell growth. The appearances of cellular apoptosis were detected by laser scanning confocal microscopy and light microscopy. The expressions of LC3 and p62 were detected by laser scanning confocal microscopy. MTT tests showed that the non-toxic dose of CQ could increase the inhibition rate of BGC823 cells induced by cisplatin. Under the light microscope, the ratio of apoptotic cells in the group treated with non-toxic dose of CQ combined with cisplatin was higher than that in the group treated with cisplatin alone. Hoechst33342 staining showed that the ratio of apoptotic cells in the combination group was higher than that in the cisplatin group. The expression and colocalization of LC3 and p62 proteins were significantly increased in the combination group. These results indicate that CQ can enhance the cell apoptosis induced by cisplatin in BGC823 cells, which is through the inhibition of autophagy.


Sign in / Sign up

Export Citation Format

Share Document