A Comparison of the Gas Phase Processes Resulting from SiH4 and Si2H6 Photodissociation with a Pulsed ArF Excimer Laser

1988 ◽  
Vol 129 ◽  
Author(s):  
E. Boch ◽  
C. Fuchs ◽  
E. Fogarassy ◽  
P. Siffert

ABSTRACTWe present in this paper a comparison of the photodissociation processes of SiH4 and Si2H6 under pulsed excimer laser at 193 nm. The experimental curves of the gas composition as a function of laser energy density show that the dissociation of Si2H6 results from both one and two-photon absorption whereas SiH4 only absorbs two photons. The deposition yield of Si2H6 has also been determined as a function of the number of laser pulses or initial pressure. These experimental results show the establishment of a stationary state in the gas phase and prove the existence of reverse reactions in the disilane kinetic model. The photodissociation of Si2H6 under UV laser excitation (193 nm) presents, therefore, similar properties to those of SiH4.

1987 ◽  
Vol 101 ◽  
Author(s):  
C. Fuchs ◽  
E. Boch ◽  
E. Fogarassy ◽  
B. Aka ◽  
P. Siffert

ABSTRACTWe have determined for the first time, the two-photon absorption cross-section of silane at 193 nm, by measuring directly the fraction of incident light absorbed in the gas phase during the irradiation with a pulsed ArF excimer laser.


2019 ◽  
Author(s):  
Pralok K. Samanta ◽  
Md Mehboob Alam ◽  
Ramprasad Misra ◽  
Swapan K. Pati

Solvents play an important role in shaping the intramolecular charge transfer (ICT) properties of π-conjugated molecules, which in turn can affect their one-photon absorption (OPA) and two-photon absorption (TPA) as well as the static (hyper)polarizabilities. Here, we study the effect of solvent and donor-acceptor arrangement on linear and nonlinear optical (NLO) response properties of two novel ICT-based fluorescent sensors, one consisting of hemicyanine and dimethylaniline as electron withdrawing and donating groups (molecule 1), respectively and its boron-dipyrromethene (BODIPY, molecule 2)-fused counterpart (molecule 3). Density functional theoretical (DFT) calculations using long-range corrected CAM-B3LYP and M06-2X functionals, suitable for studying properties of ICT molecules, are employed to calculate the desired properties. The dipole moment (µ) as well as the total first hyperpolarizability (β<sub>total</sub>) of the studied molecules in the gas phase is dominantly dictated by the component in the direction of charge transfer. The ratios of vector component of first hyperpolarizability (β<sub>vec</sub>) to β<sub>total</sub> also reveal unidirectional charge transfer process. The properties of the medium significantly affect the OPA, hyperpolarizability and TPA properties of the studied molecules. Time dependent DFT (TDDFT) calculations suggest interchanging between two lowest excited states of molecule 3 from the gas phase to salvation. The direction of charge polarization and dominant transitions among molecular orbitals involved in the OPA and TPA processes are studied. The results presented are expected to be useful in tuning the NLO response of many ICT-based chromophores, especially those with BODIPY acceptors.<br>


1996 ◽  
Vol 16 (4) ◽  
pp. 245-253
Author(s):  
K. Sentrayan ◽  
E. Haque ◽  
A. Michael ◽  
V. S. Kushawaha

The photolysis of silane (SiH4) was carried out using the third harmonic of a Nd: YAG laser at 355 nm, at a fixed SiH4 pressure of 350 Torr, varying the laser energy fluence in the range of 30–300 Jcm-2. The emission spectra indicates that the photofragments formed are SiH2, SiH, Si, H2, and H. The (A1B1-X1A1) transitions at 552.7 nm, 525.3 nm, 505.6 nm, and 484.7 nm of SiH2 are due to a two photon absorption process. The (A2Δ-X2π) transitions of SiH at 425.9 nm, 418 nm, 414.2 nm, 412.8 nm and 395.6 nm are due to a three photon absorption process. The brownish white deposit on the cell windows indicates the presence of amorphous silicon (a:Si-H). The two atomic lines of Si(4s1P0→ 3p21D2) at 288.1 nm, and (4s3Pj→ 3P3Pj) at 251.6 nm are observed. The atomic Si transitions are due to a three photon absorption. We observed seven transitions due to molecular hydrogen at wavelengths 577.5 nm, 565.5 nm, 534.4 nm, 542.5 nm, 471 nm, 461.7 nm, and 455.4 nm. These bands are due to a four photon absorption proc6ss. In addition to the molecular bands we also observed hydrogen atomic lines Hβ, Hγ and Hδ.


JETP Letters ◽  
2019 ◽  
Vol 109 (6) ◽  
pp. 382-386 ◽  
Author(s):  
S. I. Kudryashov ◽  
P. A. Danilov ◽  
S. G. Bezhanov ◽  
A. A. Rudenko ◽  
A. A. Ionin ◽  
...  

2017 ◽  
Vol 5 (14) ◽  
pp. 3579-3584 ◽  
Author(s):  
Oriana I. Avila ◽  
Juliana M. P. Almeida ◽  
Franciele R. Henrique ◽  
Ruben D. Fonseca ◽  
Gustavo F. B. Almeida ◽  
...  

Conversion of PTHT into PPV is achieved by direct laser writing. Fs-laser pulses induce photo-thermal reactions due to two-photon absorption, resulting in the microscopic control of PPV polymerization. Such methodology is a promising way towards the fabrication of arbitrary polymeric microcircuits.


2017 ◽  
Vol 56 (12) ◽  
pp. 122601 ◽  
Author(s):  
Tomoharu Nakazato ◽  
Xiaoyang Wang ◽  
Chuangtian Chen ◽  
Shuntaro Watanabe

Sign in / Sign up

Export Citation Format

Share Document