Adsorption of Silicon Tetrachloride on Si(111) 7×7

1988 ◽  
Vol 131 ◽  
Author(s):  
P. Gupta ◽  
P. A. Coon ◽  
B. G. Koehler ◽  
S. M. George

ABSTRACTThe kinetics of SiCl4 adsorption on Si(lll) 7×7 were studied using laser induced thermal desorption (LITD) and temperature programmed desorption (TPD) techniques. The initial reactive sticking coefficient of SiCl4 on Si(lll) 7×7 was observed to decrease with increasing surface temperature. This decrease was consistent with a precursor-mediated adsorption model. Both LITD and TPD experiments monitored SiCl2 as the main desorption product. These results suggest that SiC12 may be the stable chlorine species on the Si(lll) 7×7 surface.

1988 ◽  
Vol 131 ◽  
Author(s):  
S. M. George ◽  
P. Gupta ◽  
C. H. Mak ◽  
P. A. Coon

ABSTRACTThe kinetics of the initial oxidation of silicon surfaces by O2 were studied using laser-induced thermal desorption (LITD), temperature programmed desorption (TPD) and Fourier Transform Infrared (FTIR) spectroscopy. The LITD results showed that the oxidation of Si(111)7×7 by O2 was characterized by two kinetic processes: an initial rapid oxygen uptake followed by a slower growth that asymptotically approached an apparent saturation oxygen coverage. The initial reactive sticking coefficient of O2 on Si(111)7×7 decreased with surface temperature. In contrast, TPD experiments on Si(111)7×7 and FTIR studies on porous silicon demonstrated that the apparent saturation oxygen coverage increased as a function of surface temperature. Experiments with preadsorbed hydrogen also revealed that silicon oxidation was inhibited as a function of increasing hydrogen coverage on the Si(111)7×7 surface.


2020 ◽  
Author(s):  
Stefan R. Kachel ◽  
Pierre Martin Dombrowski ◽  
Tobias Breuer ◽  
Michael Gottfried ◽  
Gregor Witte

Here, we use temperature-programmed desorption (TPD) and Monte Carlo (MC) simulations<br>of TPD traces to characterize the desorption kinetics of pentacene (PEN) and perfluoropentacene (PFP) on MoS2 as a model system for OSCs on TMDCs. We show that the monolayers of PEN and PFP are thermally stabilized compared to their multilayers, which allows to prepare nominal monolayers by selective desorption of multilayers. This stabilization is, however, caused by entropy due to a high molecular mobility rather than an enhanced molecule-substrate bond. Consequently, the nominal monolayers are not densely packed films.


1990 ◽  
Vol 204 ◽  
Author(s):  
P. Gupta ◽  
P.A. Coon ◽  
B.G. Koehler ◽  
M.L. Wise ◽  
S.M. George

ABSTRACTThe adsorption and desorption kinetics for SiCl4 and SiCl2H2 on Si(111) 7×7 were studied using laser-induced thermal desorption (LITD) and temperature programmed desorption (TPD) techniques. Both LITD and TPD experiments monitored SiCl2 as the main desorption product at 950 K at all coverages of SiCl4 and SiCl2H2 on Si(111) 7×7.HC1 desorption at 850 K and H2 desorption at 810 K were also observed following SiCl2H2 adsorption. Isothermal LITD measurements of SiCl4 and SiCl2H2) adsorption on Si(111) 7×7 revealed that the initial reactive sticking coefficient decreased with increasing surface temperature for both molecules. The temperature-dependent sticking coefficients were consistent with precursor-mediated adsorption kinetics. Isothermal LITD studies of SiC12 desorption revealed second-order SiCl2 desorption kinetics. The desorption kinetics were characterizedby a desorption activation energy of Ed = 67 kcal/mol and a preexponential of vd = 3.2 cm2/s. TPD studies observed that the HCI desorption yield decreased relative to H2 and SiCl2 desorption as a function of surface coverage following SiCl2H2 exposure. These results indicate that when more hydrogen desorbs as H2 at higher coverages, The remaining chlorine is forced to desorb as SiCl 2.


2020 ◽  
Author(s):  
Stefan R. Kachel ◽  
Pierre Martin Dombrowski ◽  
Tobias Breuer ◽  
Michael Gottfried ◽  
Gregor Witte

Here, we use temperature-programmed desorption (TPD) and Monte Carlo (MC) simulations<br>of TPD traces to characterize the desorption kinetics of pentacene (PEN) and perfluoropentacene (PFP) on MoS2 as a model system for OSCs on TMDCs. We show that the monolayers of PEN and PFP are thermally stabilized compared to their multilayers, which allows to prepare nominal monolayers by selective desorption of multilayers. This stabilization is, however, caused by entropy due to a high molecular mobility rather than an enhanced molecule-substrate bond. Consequently, the nominal monolayers are not densely packed films.


Sign in / Sign up

Export Citation Format

Share Document