The Electronic Transfer and the Formation of Cationic Intercalation Compounds

1988 ◽  
Vol 135 ◽  
Author(s):  
J. Rouxel

AbstractLow-dimensional solids are known to be among the best host structures to practice intercalation chemistry. Besides geometrical aspects which play an important role but are now quite well understood, this paper emphasizes the relationship between chemical reactivity and the electronic structure of the host. A special attention is paid to the nature of redox centers involved in the intercalation process and to the connection between the phase diagram and the band structure of the host material.

2002 ◽  
Vol 01 (02) ◽  
pp. 159-169 ◽  
Author(s):  
JIN-CHENG ZHENG ◽  
HUI-QIONG WANG ◽  
A. T. S. WEE ◽  
C. H. A. HUAN

The stability and electronic structure of a single monatomic Al wire has been studied using the ab initio pseudopotential method. The Al wire undergoes two structural rearrangements under compression, i.e., zigzag configurations at angles of 140° and 60°. The evolution of electronic structures of the Al chain as a function of structural phase transition has been investigated. The relationship between electronic structure and geometric stability is also discussed. The 2p bands in the Al nanowire are shown to play a critical role in its stability. The effects of density functionals (GGA and LDA) on cohesive energy and bond length of Al nanostructures (dimer, chains, and monolayers) are also examined. The link between low dimensional 0D structure (dimer) to high dimensional 3D bulk Al is estimated. An example of optimized tip-suspended finite atomic chain is presented to bridge the gap between hypothetical infinite chains and experimental finite chains.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1535
Author(s):  
Shiu-Ming Huang ◽  
Jai-Lung Hung ◽  
Mitch Chou ◽  
Chi-Yang Chen ◽  
Fang-Chen Liu ◽  
...  

Broadband photosensors have been widely studied in various kinds of materials. Experimental results have revealed strong wavelength-dependent photoresponses in all previous reports. This limits the potential application of broadband photosensors. Therefore, finding a wavelength-insensitive photosensor is imperative in this application. Photocurrent measurements were performed in Sb2Te3 flakes at various wavelengths ranging from visible to near IR light. The measured photocurrent change was insensitive to wavelengths from 300 to 1000 nm. The observed wavelength response deviation was lower than that in all previous reports. Our results show that the corresponding energies of these photocurrent peaks are consistent with the energy difference of the density of state peaks between conduction and valence bands. This suggests that the observed photocurrent originates from these band structure peak transitions under light illumination. Contrary to the most common explanation that observed broadband photocurrent carrier is mainly from the surface state in low-dimensional materials, our experimental result suggests that bulk state band structure is the main source of the observed photocurrent and dominates the broadband photocurrent.


2014 ◽  
Vol 895 ◽  
pp. 420-423 ◽  
Author(s):  
Sathya Sheela Subramanian ◽  
Baskaran Natesan

Structural optimization, magnetic ground state and electronic structure calculations of tetragonal PbMnO3have been carried out using local density approximation (LDA) implementations of density functional theory (DFT). Structural optimizations were done on tetragonal P4mm (non-centrosymmetric) and P4/mmm (centrosymmetric) structures using experimental lattice parameters and our results indicate that P4mm is more stable than P4/mmm. In order to determine the stable magnetic ground state of PbMnO3, total energies for different magnetic configurations such as nonmagnetic (NM), ferromagnetic (FM) and antiferromagnetic (AFM) were computed for both P4mm and P4/mmm structures. The total energy results reveal that the FM non-centrosymmetric structure is found to be the most stable magnetic ground state. The electronic band structure, density of states (DOS) and the electron localization function (ELF) were calculated for the stable FM structure. ELF revealed the distorted non-centrosymmetric structure. The band structure and DOS for the majority spins of FM PbMnO3showed no band gap at the Fermi level. However, a gap opens up at the Fermi level in minority spin channel suggesting that it could be a half-metal and a potential spintronic candidate.


2013 ◽  
Vol 117 (48) ◽  
pp. 25259-25268 ◽  
Author(s):  
Robin R. Knauf ◽  
M. Kyle Brennaman ◽  
Leila Alibabaei ◽  
Michael R. Norris ◽  
Jillian L. Dempsey

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
E. Maniv ◽  
M. Ben Shalom ◽  
A. Ron ◽  
M. Mograbi ◽  
A. Palevski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document