Point Defect Engineering Applied to Shallow Junction ULSI Processing

1989 ◽  
Vol 147 ◽  
Author(s):  
George A. Rozgonyi ◽  
J. W. Honeycutt

AbstractWe describe how a simple qualitative understanding of the interfacial reactions occurring during typical ULSI processes for junction formation, dopant activation, and contact silicidation can be used to eliminate end-of-range interstitial dislocation loops and beneficially impact the diffusion of dopants. Following a brief discussion of the well-documented effects of oxidation and nitridation on extended defects and dopant diffusion, conditions for elimination of implantation-induced defects are specified. Cross-section and plan-view TEM along with angle lapping and chemical etching of implanted and diffused junctions are presented to illustrate the application of point defect engineering to process technology.

2004 ◽  
Vol 96 (1) ◽  
pp. 919-921 ◽  
Author(s):  
Lin Shao ◽  
John Chen ◽  
Jianming Zhang ◽  
D. Tang ◽  
Sanjay Patel ◽  
...  

1992 ◽  
Vol 262 ◽  
Author(s):  
H. L. Meng ◽  
S. Prusstn ◽  
K. S. Jones

ABSTRACTPrevious results [1] have shown that type II (end-of-range) dislocation loops can be used as point defect detectors and are efficient in measuring oxidation induced point defects. This study investigates the interaction between oxidation-induced point defects and dislocation loops when Ge+ implantation was used to form the type II dislocation loops. The type II dislocation loops were introduced via Ge+ implants into <100> Si wafers at 100 keV to at doses ranging from 2×1015 to l×1016/cm2. The subsequent furnace annealing at 900 °C was done for times between 30 min and 4 hr in either a dry oxygen or nitrogen ambient. The change in atom concentration bound by dislocation loops as a result of oxidation was measured by plan-view transmission electron microscopy (PTEM). The results show that the oxidation rate for Ge implanted Si is similar to Si+ implanted Si. Upon oxidation a decrease in the interstitial injection was observed for the Ge implanted samples relative to the Si implanted samples. With increasing Ge+ dose the trapped atom concentration bound by the loops actually decreases upon oxidation relative to the inert ambient implying oxidation of Ge+ implanted silicon can result in either vacancy injection or the formation of an interstitial sink.


Author(s):  
Wei-Kan Chu Wei-Kan Chu ◽  
Lin Shao Lin Shao ◽  
J. Liu ◽  
P.E. Thompson ◽  
X. Wang ◽  
...  

1997 ◽  
Vol 469 ◽  
Author(s):  
A. H. Gencer ◽  
S. Chakravarthi ◽  
I. Clejan ◽  
S. T. Dunham

Prediction of transient enhanced diffusion (TED) requires modeling of extended defects of many types, such as {311} defects, dislocation loops, boron-interstitial clusters, arsenic precipitates, etc. These extended defects not only form individually, but they also interact with each other through changes in point defect and solute concentrations. We have developed a fundamental model which can account for the behavior of a broad range of extended defects, as well as their interactions with each other. We have successfully applied and parameterized our model to a range of systems and conditions, some of which are presented in this paper.


2002 ◽  
Vol 5 (10) ◽  
pp. G93 ◽  
Author(s):  
Lin Shao ◽  
J. R. Liu ◽  
P. E. Thompson ◽  
X. M. Wang ◽  
I. Rusakova ◽  
...  

1992 ◽  
Vol 262 ◽  
Author(s):  
Barbara Vasquez ◽  
N. David Theodore

ABSTRACTPoly-buffered local-oxidation of silicon + trench-isolation (PBLT) is a technique being explored for device isolation. In an earlier study, we had reported the presence of dislocations associated with a combination of high-dose (∼5E14 cm2) phosphorous implants and PBLT isolation. In the present study, the behavior of extended defects present in the structures is analyzed in greater detail. The origin and behavior of the defects is modelled to explore potential mechanisms to explain the observations. Implantation induced dislocation-loops interact with stress fields associated with PBLT isolation-trenches. Some of the implant loops (in the presence of a stress field) transform to dislocation sources which then create glide dislocations in the structures. Strategies for defect engineering are discussed, including reducing implant-induced damage (lowering the implant dose) or reducing stress fields (by moving the edge of the implanted region away from the trench). Defect densities can be reduced or eliminated.


1997 ◽  
Vol 469 ◽  
Author(s):  
J. Desroches ◽  
V. Krishnamoorthy ◽  
K. S. Jones ◽  
C. Jasper

ABSTRACTRecent studies on the relationship between defect evolution and transient enhanced diffusion (TED) have lead to the discovery that, for sub-amorphous Si+ implants, atoms released by extended defects (i.e. {311}'s) are a primary source of interstitials for TED. In this paper, the effect of implant energy on the interstitials stored in {311} defects is reported. Silicon wafers were implanted with Si+ at fluences of 1×1014/cm2 and 2×1014/cm2 and energies of 30, 50 and 100 keV. Rapid thermal anneals (RTA) and furnace anneals were performed at times ranging from a few minutes to several hours, at temperatures of 700°, 750° and 800°C. Cross-sectional and plan-view TEM was used to obtain microstructural information. The extended defects observed upon annealing consisted of both {311} defects and dislocation loops. It was found that the ratio of the interstitials bound by extended defects and the implant dose was 0.3. Changing the implant energy did not change the total number of interstitials trapped in both types of defects combined. There was a noticeable variation in the type of defect that dominated each implant regime, despite the constant value of the trapped interstitial to dose ratio. For an RTA of 5 min. at 750°C, the ratio of {311} “rod-like” defects to dislocation loops in the 2×1014/cm2 sample unexpectedly increased as the energy increased from 30 to 50 keV.Longer furnace anneals were employed to determine the activation energy of {311} dissolution. Our data suggests a slightly higher activation energy for {311} dissolution of approximately 4.2 eV versus the previously reported 3.6 eV, however, this difference may be within experimental error.


2005 ◽  
Vol 864 ◽  
Author(s):  
G. Z. Pan ◽  
R. P. Ostroumov ◽  
L. P. Ren ◽  
Y. G. Lian ◽  
K. L. Wang

AbstractWe studied the electroluminescence (EL) of boron-implanted p-n junction Si LEDs in correlation with the implant-induced extended defects of different types. By varying the post implant annealing conditions to tune the extended defects and by using plan-view transmission electron microscopy to identify them, we found that {113} defects along Si<110> are the ones that result in strong silicon light emission of the p-n junction Si LEDs other than {111} perfect prismatic and {111} faulted Frank dislocation loops. The EL peak intensity at about 1.1 eV of {113} defect-engineered Si LEDs is about twenty-five times higher than that of dislocation defect-engineered Si LEDs. The EL measured at temperatures from room temperature to 4 K indicated that the emissions related to the extended defects are from silicon band edge radiative recombination.


Sign in / Sign up

Export Citation Format

Share Document