High-Resolution Imaging of Coga/GaAs and Eras/GaAs Interfaces

1989 ◽  
Vol 159 ◽  
Author(s):  
Jane G. Zhu ◽  
Stuart McKeman ◽  
Chris J. Palmstrøm ◽  
C. Barry Carter

ABSTRACTCoGa/GaAs and ErAs/GaAs grown by molecular-beam epitaxy have been studied using high-resolution transmission electron microscopy (HRTEM). The epitactic interfaces have been shown to be abrupt on the atomic scale. Computer simulations of the HRTEM images have been obtained for different interface structures under various specimen and image conditions. Practical problems in the comparison between the simulated and experimental images are discussed.

2016 ◽  
Vol 30 (20) ◽  
pp. 1650269 ◽  
Author(s):  
Thi Giang Le ◽  
Minh Tuan Dau

High-resolution transmission electron microscopy (HR-TEM) has been used to investigate the structural properties of GeMn/Ge nanocolumns multilayer samples grown on Ge(001) substrates by means of molecular beam epitaxy (MBE) system. Four bilayers with the spacer thickness in the range between 6 nm and 15 nm and 10 periods of bilayers of Ge[Formula: see text]Mn[Formula: see text]/Ge nanocolumn are presented. A simplified 2D model based on the theory of elastic constant interactions has been used to provide reasonable explanations to the vertical self-organization of GeMn nanocolumns in multilayers.


1995 ◽  
Vol 399 ◽  
Author(s):  
M. Shima ◽  
L. Salamanca-Riba ◽  
G. Springholz ◽  
G. Bauer

ABSTRACTMolecular beam epitaxy was used to grow EuTe(x)/PbTe(y) short period superlattices with x=1-4 EuTe(111) monolayers alternating with y≈3x PbTe monolayers. The superlattices were characterized by transmission electron microscopy and high resolution x-ray diffraction. Regions with double periodicity were observed coexisting with areas of nominal periodicity. The sample with x=3.5 and y=9, for example, contains regions with double periodicity of x=7 and y=17. X-ray diffraction measurements confirm the formation of the double periodicity in these samples by the appearance of weak satellites in between the satellites of the nominal periodicity. The double periodicity in the superlattice is believed to result from interdiffusion during the growth. A model for this process is presented.


1993 ◽  
Vol 8 (11) ◽  
pp. 2753-2756 ◽  
Author(s):  
L.B. Rowland ◽  
R.S. Kern ◽  
S. Tanaka ◽  
Robert F. Davis

Single-crystal epitaxial films of cubic β(3C)–SiC(111) have been deposited on hexagonal α(6H)–SiC(0001) substrates oriented 3–4° toward [1120] at 1050–1250 °C via gas-source molecular beam epitaxy using disilane (Si2H6) and ethylene (C2H4). High-resolution transmission electron microscopy revealed that the nucleation and growth of the β(3C)–SiC regions occurred primarily on terraces between closely spaced steps because of reduced rates of surface migration at the low growth temperatures. Double positioning boundaries were observed at the intersections of these regions.


Sign in / Sign up

Export Citation Format

Share Document