Organometallic Chemical Vapor Deposition of Strontium Titanate thin Films

1989 ◽  
Vol 168 ◽  
Author(s):  
W. A. Feil ◽  
B. W. Wessels ◽  
L. M. Tonge ◽  
T. J. Marks

AbstractSrTiO3 thin films were deposited by low pressure organometallic chemical vapor deposition on silicon substrates using the volatile metal-organic precursors titanium isopropoxide and Sr(dipivaloylmethanate)2. Oxygen and water vapor were used as reactant gases and argon was used as a carrier gas. Growth rates ranging from 0.6–2.1 μm/hr were obtained at 650–800°C. Polycrystalline films were obtained at growth temperatures of 650–750°C, and amorphous films above 750°C. SrTiO3 films deposited on silicon substrates exhibited resistivities greater than 109 Ω-cm and dielectric constants up to 100.

1989 ◽  
Vol 169 ◽  
Author(s):  
J. M. Zhang ◽  
H. O Marcy ◽  
L .M. Tonge ◽  
B. W. Wessels ◽  
T. J. Marks ◽  
...  

AbstractFilms of the high‐Tc undoped and Pb‐doped Bi‐Sr‐Ca‐Cu‐O (BSCCO) superconductors have been prepared by low pressure organometallic chemical vapor deposition (OMCVD) using the volatile metal‐organic precursors Cu(acetylacetonate)2, Sr(dipivaloylmethanate)2, Ca(dipivaloylmethanate)2, and triphenyl bismuth. Factors which influence texture and morphology of the OMCVD‐derived films have been investigated, including the effects of annealing, doping, and substrates.


2007 ◽  
Vol 515 (5) ◽  
pp. 2921-2925 ◽  
Author(s):  
Chunyu Wang ◽  
Volker Cimalla ◽  
Genady Cherkashinin ◽  
Henry Romanus ◽  
Majdeddin Ali ◽  
...  

2003 ◽  
Vol 42 (Part 1, No. 5A) ◽  
pp. 2839-2842 ◽  
Author(s):  
Jeong Hoon Park ◽  
Kug Sun Hong ◽  
Woon Jo Cho ◽  
Jang-Hoon Chung

1996 ◽  
Vol 423 ◽  
Author(s):  
S. Mirzakuchaki ◽  
H. Golestanian ◽  
E. J. Charlson ◽  
T. Stacy

AbstractAlthough many researchers have studied boron-doped diamond thin films in the past several years, there have been few reports on the effects of doping CVD-grown diamond films with phosphorous. For this work, polycrystalline diamond thin films were grown by hot filament chemical vapor deposition (HFCVD) on p-type silicon substrates. Phosphorous was introduced into the reaction chamber as an in situ dopant during the growth. The quality and orientation of the diamond thin films were monitored by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Current-voltage (I-V) data as a function of temperature for golddiamond film-silicon-aluminum structures were measured. The activation energy of the phosphorous dopants was calculated to be approximately 0.29 eV.


1991 ◽  
Vol 6 (9) ◽  
pp. 1913-1918 ◽  
Author(s):  
Jiong-Ping Lu ◽  
Rishi Raj

Chemical vapor deposition (CVD) of titanium oxide films has been performed for the first time under ultra-high vacuum (UHV) conditions. The films were deposited through the pyrolysis reaction of titanium isopropoxide, Ti(OPri)4, and in situ characterized by x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). A small amount of C incorporation was observed during the initial stages of deposition, through the interaction of precursor molecules with the bare Si substrate. Subsequent deposition produces pure and stoichiometric TiO2 films. Si–O bond formation was detected in the film-substrate interface. Deposition rate was found to increase with the substrate temperature. Ultra-high vacuum chemical vapor deposition (UHV-CVD) is especially useful to study the initial stages of the CVD processes, to prepare ultra-thin films, and to investigate the composition of deposited films without the interference from ambient impurities.


Sign in / Sign up

Export Citation Format

Share Document