Full Potential Lmto Study of Tial Alloy

1990 ◽  
Vol 186 ◽  
Author(s):  
Pradeep K. Khowash ◽  
David L. Price ◽  
Bernard R. Cooper

AbstractWe have used a full potential all electron LMTO total energy calculation with a true interstitial to establish a baseline understanding of pure γ-TiAl. The c and a lattice parameters, Bulk modulus and the Young's modulus are calculated and found to be in excellent agreement with reported experimental values.

Author(s):  
Shubha Dubey ◽  
Gitanjali Pagare ◽  
Ekta Jain ◽  
Sankar P. Sanyal

The structural properties and electronic properties of the intermetallic compound ErPb3 which crystallize in AuCu3 type structure (AB3) are studied by means of first principles total energy calculation using full potential linearized plane wave method (FP-LAPW) within the generalized gradient approximation of Perdew, Burke and Ernzrhof (PBE) and local spin density approximation (LSDA) for the exchange correlation functional and including spin magnetic calculation. The total energy is computed as a function of volume and fitted to the Birch-Murnaghan equation of state. The ground state properties of this compound such as equilibrium lattice parameter (a0), bulk modulus (B), and its pressure derivative (B’) are calculated and compared with the available experimental results. We find good agreement with the other theoretical and experimental results. For the compounds, the values of lattice constants obtained by PBE-GGA overestimates and by LSDA underestimates the available experimental values for the same, which verifies the reliability of the present calculation. The value obtained for the bulk modulus is 50.63 GPa. The analysis of electronic properties is achieved by the calculation of the band structures and the density of states in both the spin up and spin down modes, which show a metallic character of ErPB3 due to zero band gap. The values of calculated density of states are found to be 0.36 eV/states and 11.46 eV/states in spin-up and spin-down mode respectively. The calculated magnetic moment (μm) of ErPb3 is 2.06.


1998 ◽  
Vol 552 ◽  
Author(s):  
Lanting Zhang ◽  
Jiansheng Wu

ABSTRACTTitanium silicide Ti5Si3 whose melting temperature is 2130°C bears the potential for very hightemperature application. This paper reports our results on the alloying behaviour of Nb or Cr addition to this compound. Total energy calculation shows that the substitution of Ti by Nb or Cr atoms in Ti5Si3 crystal stiffens the bonding between the atoms. In experiment, two means of alloying are considered: stoichiometric and off-stoichiometric alloying. Stoichiometric alloying in Ti5Si3 results in compounds consisting of single Ti5Si3 phase while off-stoichiometric alloying yields hypereutectic microstructure with Ti5Si3 being the primary phase. The Ti5Si3 phase in both cases dissolves certain amount of Nb or Cr alloying element and its composition agrees with the stoichiometric composition of (Ti,Nb) 5Si3 or (Ti,Cr) 5Si3 The moduli of the stoichiometric alloys increase with the increase of alloying element addition, indicating an enhancement in Ti5Si3crystal.


1997 ◽  
Vol 491 ◽  
Author(s):  
A. Bere ◽  
A. Hairie ◽  
G. Nouet ◽  
E. Paumier

ABSTRACTThe semi-empirical tight-binding method is used to build up an interatomic potential in zinc. Using relaxed structures, the parameters are fitted to the lattice parameters, the elastic constants and the vacancy formation energy. The total energy calculation predicts the stability of the h.c.p. structure. The potential is used to calculate the energy of some extended defects: the basal stacking fault and two twin boundaries.


Sign in / Sign up

Export Citation Format

Share Document