Growth of Stoichiometric Bn Films by Pulsed Laser Evaporation

1988 ◽  
Vol 140 ◽  
Author(s):  
P. T. Murray ◽  
M. S. Donley ◽  
N. T. McDevitt

AbstractThe feasibility of growing stoichiometric thin films of BN by pulsed laser evaporation has been investigated. Films grown under high vacuum conditions were N-deficient. This result is consistent with thermodynamic calculations, which indicate that B metal formation, with concomitant N2 desorption, is energetically favored over BN formation. Stoichiometric films were grown in NH3 with substrate temperatures of 400, 500, and 1000ºC. Analysis of films grown under these conditions by grazing incidence x-ray diffraction indicates the films to be highly oriented, hexagonal BN.

1988 ◽  
Vol 128 ◽  
Author(s):  
P. T. Murray ◽  
M. S. Donley ◽  
N. T. McDevitt

ABSTRACTThe feasibility of growing stoichiometric thin films of BN by pulsed laser evaporation has been investigated. Films grown under high vacuum conditions were N-deficient. This result is consistent with thermodynamic calculations, which indicate that B metal formation, with concomitant N2 desorption, is energetically favored over BN formation. Stoichiometric films were grown in NH3 with substrate temperatures of 400, 500, and 1000°C. Analysis of films grown under these conditions by grazing incidence x-ray diffraction indicates the films to be highly oriented, hexagonal BN.


1988 ◽  
Vol 140 ◽  
Author(s):  
M. S. Donley ◽  
P. T. Murray ◽  
N. T. McDevitt

AbstractThe growth and characterization of MoS thin films grown by pulsed laser evaporation is investigated. TOF anafysis of the ions evaporated from an MoS2 target indicates that PLE results primarily in the evaporation of atomic Mo and S species; MoxSy clusters were also detected, but were present at a significantly Iower intensity. TOF velocity analysis indicates an effective plasma temperature of 1500K. Stoichiometric MoS2 films were grown at substrate temperatures between room temperature and 500ºC under the above laser conditions. XPS data is used to develop a Wagner chemical state plot. Analysis of the films by Raman spectroscopy and glancing angle x-ray diffraction indicates the films to be crystalline, hexagonal MoS2, with a tendency for basal plane orientation parallel to the substrate.


1992 ◽  
Vol 242 ◽  
Author(s):  
W. J. Meng ◽  
T. A. Perry ◽  
J. Heremans ◽  
Y. T. Cheng

ABSTRACTThin films of aluminum nitride were grown epitaxially on Si(111) by ultra-high-vacuum dc magnetron reactive sputter deposition. Epitaxy was achieved at substrate temperatures of 600° C or above. We report results of film characterization by x-ray diffraction, transmission electron microscopy, and Raman scattering.


1988 ◽  
Vol 02 (08) ◽  
pp. 999-1003
Author(s):  
F.M. ZHANG ◽  
Y.C. ZHANG ◽  
S.J. GU ◽  
Y.L. ZHOU ◽  
Z.H. CHEN ◽  
...  

We report here the preparation of the superconducting Bi-Sr-Ca-Cu-O thin films on SrTiO 3(100) substrates by a Nd:YAG laser, which provides laser pulses with wavelength of 1.06µm and pulse width of 200ns. After the heat treatment at 850°C for half an hour in oxygen flow, the samples exhibit superconductivity with the zero resistance at 66.8K and the onset temperature around 84K. X-ray diffraction analyses show that the samples have the preferred orientation with the c-axis perpendicular to the substrate.


2000 ◽  
Vol 15 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Woong Choi ◽  
Timothy Sands ◽  
Kwang-Young Kim

Epitaxial thin films of LaVO3 were grown on (001) LaAlO3 substrates by pulsed laser deposition from a LaVO4 target in a vacuum ambient at substrate temperatures ≥500 °C. X-ray diffraction studies showed that epitaxial LaVO3 films consist of mixed domains of [110] and [001] orientations. Thermoprobe and four-probe conductivity measurements demonstrated the p-type semiconducting behavior of the epitaxial LaVO3 films. The temperature dependence of the conductivity is consistent with a thermally activated hopping mechanism with an activation barrier of 0.16 eV.


1990 ◽  
Vol 191 ◽  
Author(s):  
Ming Y. Chen ◽  
P. Terrence Murray

ABSTRACTThin films of TiO2 have been grown by pulsed laser evaporation. The films were analyzed by in-situ Auger and x-ray photoelectron spectroscopy as well as by ex-situ grazing incidence xray diffraction. Films grown at room temperature and at a pressure of 5×10minus; 3 Torr were oxygen deficient. Films grown at 500°C and higher were found to be stoichiometric TiO2.The effect of substrate temperature and evaporation conditions on film properties will be discussed.


2002 ◽  
Vol 750 ◽  
Author(s):  
Hyunbin Kim ◽  
Yogesh K. Vohra ◽  
William R. Lacefield ◽  
Renato P. Camata

ABSTRACTWe have obtained nanostructured hydroxyapatite thin films on titanium alloy substrates by pulsed laser deposition. Deposition was carried out using a KrF excimer laser (248 nm) with the energy density of 4 – 7 J/cm2 at substrate temperatures in the 550°C - 650°C range. The crystallinity of the coatings was probed by X-ray diffraction. Phase transitions from hydroxyapatite to other calcium phosphate compounds were observed with varying the substrate temperature during the growth process. Scanning electron microscopy revealed thin films made up of partially sintered nanoscale grains. The average size of nanoscale grains increased significantly with film thickness, suggesting a growth mechanism involving the coalescence of nanoscale grains. As the laser energy density increases, the hydroxyapatite crystallites in the coatings are oriented preferentially along the c-axis perpendicular to the substrate. Mechanical properties of the highly c-axis oriented coatings such as hardness and Young's modulus were studied by using nanoindentation technique.


2011 ◽  
Vol 44 (5) ◽  
pp. 983-990 ◽  
Author(s):  
Chris Elschner ◽  
Alexandr A. Levin ◽  
Lutz Wilde ◽  
Jörg Grenzer ◽  
Christian Schroer ◽  
...  

The electrical and optical properties of molecular thin films are widely used, for instance in organic electronics, and depend strongly on the molecular arrangement of the organic layers. It is shown here how atomic structural information can be obtained from molecular films without further knowledge of the single-crystal structure. C60 fullerene was chosen as a representative test material. A 250 nm C60 film was investigated by grazing-incidence X-ray diffraction and the data compared with a Bragg–Brentano X-ray diffraction measurement of the corresponding C60 powder. The diffraction patterns of both powder and film were used to calculate the pair distribution function (PDF), which allowed an investigation of the short-range order of the structures. With the help of the PDF, a structure model for the C60 molecular arrangement was determined for both C60 powder and thin film. The results agree very well with a classical whole-pattern fitting approach for the C60 diffraction patterns.


2012 ◽  
Vol 90 (1) ◽  
pp. 39-43 ◽  
Author(s):  
X. Xiang ◽  
D. Chang ◽  
Y. Jiang ◽  
C.M. Liu ◽  
X.T. Zu

Anatase TiO2 thin films are deposited on K9 glass samples at different substrate temperatures by radio frequency magnetron sputtering. N ion implantation is performed in the as-deposited TiO2 thin films at ion fluences of 5 × 1016, 1 × 1017, and 5 × 1017 ions/cm2. X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy (XPS), and UV–visible spectrophotometer are used to characterize the films. With increasing N ion fluences, the absorption edges of anatase TiO2 films shift to longer wavelengths and the absorbance increases in the visible light region. XPS results show that the red shift of TiO2 films is due to the formation of N–Ti–O compounds. As a result, photoactivity is enhanced with increasing N ion fluence.


Sign in / Sign up

Export Citation Format

Share Document