A New Type of Cluster-Ion Source for Thin Film Deposition

1990 ◽  
Vol 206 ◽  
Author(s):  
Hellmut Haberland ◽  
Martin Karrais ◽  
Martin Mall

ABSTRACTAtoms are gas discharge sputtered from a solid target. They are condensed to form clusters using the gas aggregation technique. An intense beam of clusters of all solid materials can be obtained. Up to 80 % of the clusters can be ionised without using additional electron impact ionisation. Total deposition rates vary between 1 and 1000 Å per second depending on cluster diameter, which can be varied between 3 and 500 nm. Thin films of Al, Cu, and Mo have been produced so far. For non accelerated beams a weakly adhering mostly coulored deposit is obtained. Accelerating the cluster ions this changes to a strongly adhering film, having a shiny metallic appearance, and a very sharp and plane surface as seen in an electron microscope. The advantages compared to Kyoto ICB-method are: easy control of the cluster size, no electron impact ionisation, high degree of ionisation, and sputtering is used instead of thermal evaporation, which allows the use of high melting point materials.

1993 ◽  
Vol 316 ◽  
Author(s):  
BERTILO E. KEMPF

ABSTRACTTitanium metal is sputtered by ion beams using a Kaufman-type ion source with carbondioxide as working gas. Deposition takes place on watercooled substrates of silicon and InP. The films obtained are amorphous; they adhere excellently. SEM-pictures reveal a featureless dense fracture and a smooth surface. Despite a carbon content of 9 at % the films are highly transparent in the visible and near infrared wavelength range. Refractive indices center around 2.15 at values typically found for amorphous TiO2. The electrical properties are characterized by dielectric constant of ε = 26 ± 3, leakage current densities at breakdown of jL = 3.65 . 10-3 A/cm2 and breakdown fields EB > 1 MeV/cm.


2001 ◽  
Vol 73 (5) ◽  
pp. 547-554 ◽  
Author(s):  
B. Klipp ◽  
M. Grass ◽  
J. Müller ◽  
D. Stolcic ◽  
U. Lutz ◽  
...  

1992 ◽  
Vol 53 (3) ◽  
pp. 289-292 ◽  
Author(s):  
S.F. Belykh ◽  
R.N. Evtukhov ◽  
U.Kh. Rasulev ◽  
I.V. Redina

2002 ◽  
Vol 749 ◽  
Author(s):  
Noriaki Toyoda ◽  
Isao Yamada

ABSTRACTTa2O5 films were deposited on a rough surface (average roughness 1.3nm, peak-to-valley 14nm) and surface roughness evolutions and improvements by O2 gas cluster ion beam (O2-GCIB) assisted deposition was studied. The average roughness dramatically decreased from 1.3nm to 0.5nm after deposition of Ta2O5 films 20nm in thickness with 7 keV of O2 cluster ion beams. As there was no etching or sputtering of Ta2O5 film by 7keV O2-GCIB irradiations, O2-GCIB assist deposition realized significant improvement of surface roughness by additional deposition of Ta2O5 film whose thickness was close to the peak-to-valley of original surface. It is expected that morphological evolution of the film by GCIB assist deposition becomes completely different from conventional ion assist deposition due to energetic cluster ion impacts.


2007 ◽  
Vol 539-543 ◽  
pp. 3151-3156
Author(s):  
S.T. Davies

The growth of TiNi thin films by ion beam sputter deposition using a Kaufmann type ion source is described. Argon ions are used to sputter separate Ti and Ni targets to deposit nearequiatomic TiNi thin films. Typically, ion energies and current densities of 1500 eV and 1 mA cm-2 respectively are used, with an argon overpressure of around 0.05 mtorr, to achieve deposition rates of order 1 μm hr-1. The thermophysical properties of the deposited films were investigated by thermal imaging. Patterning of TiNi films and foils with micrometre resolution using KrF excimer laser ablation at 248 nm wavelength, with beam fluence up to 2.5 J cm-2, 15 ns pulse duration and pulse rates up to 100 Hz has also been investigated.


2016 ◽  
Vol 23 (1) ◽  
pp. 182-186 ◽  
Author(s):  
Lin Zhou ◽  
Mourad Idir ◽  
Nathalie Bouet ◽  
Konstantine Kaznatcheev ◽  
Lei Huang ◽  
...  

One-dimensional ion-beam figuring (1D-IBF) can improve grazing-incidence reflective optics, such as Kirkpatrick–Baez mirrors. 1D-IBF requires only one motion degree of freedom, which reduces equipment complexity, resulting in compact and low-cost IBF instrumentation. Furthermore, 1D-IBF is easy to integrate into a single vacuum system with other fabrication processes, such as a thin-film deposition. The NSLS-II Optical Metrology and Fabrication Group has recently integrated the 1D-IBF function into an existing thin-film deposition system by adding an RF ion source to the system. Using a rectangular grid, a 1D removal function needed to perform 1D-IBF has been produced. In this paper, demonstration experiments of the 1D-IBF process are presented on one spherical and two plane samples. The final residual errors on both plane samples are less than 1 nm r.m.s. The surface error on the spherical sample has been successfully reduced by a factor of 12. The results show that the 1D-IBF method is an effective method to process high-precision 1D synchrotron optics.


Sign in / Sign up

Export Citation Format

Share Document