TiOxCy Thin Film Deposition by CO2+-Ion Beam Sputtering of Titanium

1993 ◽  
Vol 316 ◽  
Author(s):  
BERTILO E. KEMPF

ABSTRACTTitanium metal is sputtered by ion beams using a Kaufman-type ion source with carbondioxide as working gas. Deposition takes place on watercooled substrates of silicon and InP. The films obtained are amorphous; they adhere excellently. SEM-pictures reveal a featureless dense fracture and a smooth surface. Despite a carbon content of 9 at % the films are highly transparent in the visible and near infrared wavelength range. Refractive indices center around 2.15 at values typically found for amorphous TiO2. The electrical properties are characterized by dielectric constant of ε = 26 ± 3, leakage current densities at breakdown of jL = 3.65 . 10-3 A/cm2 and breakdown fields EB > 1 MeV/cm.

2020 ◽  
Vol 38 (6) ◽  
pp. 063412
Author(s):  
Martin Becker ◽  
Sebastian L. Benz ◽  
Limei Chen ◽  
Angelika Polity ◽  
Peter J. Klar ◽  
...  

1994 ◽  
Vol 354 ◽  
Author(s):  
B.E. Kempf ◽  
H.W. Dinges ◽  
A. PÖcker

AbstractOxides of hafnium, niobium, tantalum, and zirconium are deposited by ion beam sputtering of the pure metal targets using CO2 as working gas. The resulting thin films are amorphous, featureless smooth and of excellent adherence to semiconductor substrates. Despite a certain content of carbon they are highly transparent in the visible and near infrared wavelength range as determined by spectroscopic ellipsometry. Their wide range of refractive indices makes them suitable for multilayer optical filter design.


2007 ◽  
Vol 539-543 ◽  
pp. 3151-3156
Author(s):  
S.T. Davies

The growth of TiNi thin films by ion beam sputter deposition using a Kaufmann type ion source is described. Argon ions are used to sputter separate Ti and Ni targets to deposit nearequiatomic TiNi thin films. Typically, ion energies and current densities of 1500 eV and 1 mA cm-2 respectively are used, with an argon overpressure of around 0.05 mtorr, to achieve deposition rates of order 1 μm hr-1. The thermophysical properties of the deposited films were investigated by thermal imaging. Patterning of TiNi films and foils with micrometre resolution using KrF excimer laser ablation at 248 nm wavelength, with beam fluence up to 2.5 J cm-2, 15 ns pulse duration and pulse rates up to 100 Hz has also been investigated.


1998 ◽  
Vol 4 (S2) ◽  
pp. 492-493 ◽  
Author(s):  
M.W. Phaneuf ◽  
J. Li ◽  
T. Malis

Focused Ion Beam or FIB systems have been used in integrated circuit production for some time. The ability to combine rapid, precision focused ion beam sputtering or gas-assisted ion etching with focused ion beam deposition allows for rapid-prototyping of circuit modifications and failure analysis of defects even if they are buried deep within the chip's architecture. Inevitably, creative TEM researchers reasoned that a FIB could be used to produce site specific parallel-sided, electron transparent regions, thus bringing about the rather unique situation wherein the specimen preparation device often was worth as much as the TEM itself.More recently, FIB manufacturers have concentrated on improving the resolution and imaging characteristics of these instruments, resulting in a more general-purpose characterization tool. The Micrion 2500 FIB system used in this study is capable of 4 nm imaging resolution using either secondary electron or secondary ions, both generated by a 50 kV liquid metal gallium ion source.


2019 ◽  
Vol 970 ◽  
pp. 283-289
Author(s):  
Alexander S. Rudenkov ◽  
Alexander V. Rogachev ◽  
Alexander N. Kupo ◽  
Petr A. Luchnikov ◽  
Nataliya Chicherina

The effect of the formation and heat treatment modes of silicon-carbon coatings deposited by ion-beam sputtering of silicon carbide on their morphology, chemical and phase composition is determined. It has been established that an increase in the power of the ion source from 432 W to 738 W leads to a decrease in the sp3/sp2 phase ratio by 1.7 times and an increase in the ratio of Si-C/Si-O bonds by 1.9 times. It is shown that doping of carbon coatings with silicon carbide increases their heat resistance.


1980 ◽  
Vol 65 (2) ◽  
pp. 233-245 ◽  
Author(s):  
H.-J. Erler ◽  
G. Reisse ◽  
C. Weissmantel

2001 ◽  
Vol 65 (1-4) ◽  
pp. 211-218 ◽  
Author(s):  
Younggun Han ◽  
Donghwan Kim ◽  
Jun-Sik Cho ◽  
Seok-Keun Koh ◽  
Yo Seung Song

Sign in / Sign up

Export Citation Format

Share Document