On the Structure of Transformation Interfaces

1991 ◽  
Vol 229 ◽  
Author(s):  
F. A. Khalid ◽  
D. V. Edmonds

AbstractThe transformation interfaces of some well known products of austenite decomposition in steels, namely pearlite, and proeutectoid grain boundary allotriomorphic cementite and Widmanstatten cementite, have been examined by TEM. This has been accomplished by using high- Mn high- C alloys that decompose at intermediate ageing temperatures but in which the untransformed parent austenite phase remains stable at room temperature, thus preserving the transformation interface. In conventional steels the residual austenite would undergo the martensite reaction, destroying the interface in the process. Defects in the interface have been analysed and related to intersections with stacking faults in the parent austenite phase. The nature and occurrence of these stacking faults, and their effect on the transformation, is considered.

Author(s):  
F. A. Khalid ◽  
M. Farooque ◽  
D. V. Edmonds

The morphology and mechanism of Cu precipitation in grain boundary allotriomorphs of proeutectoid cementite forming isothermally inaustenite in two Fe-10Mn-3Cu-0.8C and Fe-lOMn- lCu-0.8C (nominal wt%) alloys are being studied. These particular alloys can be partially decomposed to the proeutectoid and eutectoid phases recognisable in ferritic steels, but possess the advantage that unlike ferritic steels the parent austenite phase is retained after cooling to room temperature thus facilitating studies of the decomposition reactions.A 50 g ingot of each experimental alloy was argon arc melted using high purity materials and homogenised. Samples were rolled, swaged and machined to 3mm diameter rod, solution treated at 1200 °C for 1 hr and quenched in water. Specimens were then solutionised at 1200°C for 10 min and isothermally transformed at 615 °C for 4 hrs. Methods for the preparation of thin foils for TEM are given elsewhere.The heat treatment resulted in the formation of grain boundary allotriomorphs of cementite in austenite (Fig 1). TEM confirmed that the cementite allotriomorphs formed with the Pitsch orientation relationship to one of the austenite grains at the grain boundary (Fig 2c ) consistent with a previous analysis.


Author(s):  
J. E. Doherty ◽  
A. F. Giamei ◽  
B. H. Kear ◽  
C. W. Steinke

Recently we have been investigating a class of nickel-base superalloys which possess substantial room temperature ductility. This improvement in ductility is directly related to improvements in grain boundary strength due to increased boundary cohesion through control of detrimental impurities and improved boundary shear strength by controlled grain boundary micros true tures.For these investigations an experimental nickel-base superalloy was doped with different levels of sulphur impurity. The micros tructure after a heat treatment of 1360°C for 2 hr, 1200°C for 16 hr consists of coherent precipitates of γ’ Ni3(Al,X) in a nickel solid solution matrix.


Author(s):  
Bradley L. Thiel ◽  
Chan Han R. P. ◽  
Kurosky L. C. Hutter ◽  
I. A. Aksay ◽  
Mehmet Sarikaya

The identification of extraneous phases is important in understanding of high Tc superconducting oxides. The spectroscopic techniques commonly used in determining the origin of superconductivity (such as RAMAN, XPS, AES, and EXAFS) are surface-sensitive. Hence a grain boundary phase several nanometers thick could produce irrelevant spectroscopic results and cause erroneous conclusions. The intergranular phases present a major technological consideration for practical applications. In this communication we report the identification of a Cu2O grain boundary phase which forms during the sintering of YBa2Cu3O7-x (1:2:3 compound).Samples are prepared using a mixture of Y2O3. CuO, and BaO2 powders dispersed in ethanol for complete mixing. The pellets pressed at 20,000 psi are heated to 950°C at a rate of 5°C per min, held for 1 hr, and cooled at 1°C per min to room temperature. The samples show a Tc of 91K with a transition width of 2K. In order to prevent damage, a low temperature stage is used in milling to prepare thin foils which are then observed, using a liquid nitrogen holder, in a Philips 430T at 300 kV.


Author(s):  
R. Haswell ◽  
U. Bangert ◽  
P. Charsley

A knowledge of the behaviour of dislocations in semiconducting materials is essential to the understanding of devices which use them . This work is concerned with dislocations in alloys related to the semiconductor GaAs . Previous work on GaAs has shown that microtwinning occurs on one of the <110> rosette arms after indentation in preference to the other . We have shown that the effect of replacing some of the Ga atoms by Al results in microtwinning in both of the rosette arms.In the work to be reported dislocations in specimens of different compositions of Gax Al(1-x) As and Gax In(1-x) As have been studied by using micro indentation on a (001) face at room temperature . A range of electron microscope techniques have been used to investigate the type of dislocations and stacking faults/microtwins in the rosette arms , which are parallel to the [110] and [10] , as a function of composition for both alloys . Under certain conditions microtwinning occurs in both directions . This will be discussed in terms of the dislocation mobility.


2005 ◽  
Vol 96 (10) ◽  
pp. 1187-1192 ◽  
Author(s):  
Raymond J. Kremer ◽  
Mysore A. Dayananda ◽  
Alexander H. King

Author(s):  
Jyrki Miettinen ◽  
Sami Koskenniska ◽  
Mahesh Somani ◽  
Seppo Louhenkilpi ◽  
Aarne Pohjonen ◽  
...  

AbstractNew continuous cooling transformation (CCT) equations have been optimized to calculate the start temperatures and critical cooling rates of phase formations during austenite decomposition in low-alloyed steels. Experimental CCT data from the literature were used for applying the recently developed method of calculating the grain boundary soluble compositions of the steels for optimization. These compositions, which are influenced by solute microsegregation and precipitation depending on the heating/cooling/holding process, are expected to control the start of the austenite decomposition, if initiated at the grain boundaries. The current optimization was carried out rigorously for an extended set of steels than used previously, besides including three new solute elements, Al, Cu and B, in the CCT-equations. The validity of the equations was, therefore, boosted not only due to the inclusion of new elements, but also due to the addition of more low-alloyed steels in the optimization. The final optimization was made with a mini-tab tool, which discarded statistically insignificant parameters from the equations and made them prudently safer to use. Using a thermodynamic-kinetic software, IDS, the new equations were further validated using new experimental CCT data measured in this study. The agreement is good both for the phase transformation start temperatures as well as the final phase fractions. In addition, IDS simulations were carried out to construct the CCT diagrams and the final phase fraction diagrams for 17 steels and two cast irons, in order to outline the influence of solute elements on the calculations and their relationship with literature recommendations.


2021 ◽  
Vol 126 (22) ◽  
Author(s):  
Bo Han ◽  
Ruixue Zhu ◽  
Xiaomei Li ◽  
Mei Wu ◽  
Ryo Ishikawa ◽  
...  

1992 ◽  
Vol 287 ◽  
Author(s):  
T.S. Yen ◽  
W.Y. Sun

ABSTRACTAdditions and revisions to several of the most important phase diagrams and phase behavior diagrams in the silicon nitride field are reviewed in this work, with emphasis on the Y-Si-A1-O-N system. This information is further used to make observations on the promising silicon nitride systems containing either highly refractory grain boundary phases or compatible matrix phases of desirable properties. Examples are provided to illustrate the advantage of such a basic approach to materials design. Hardness, toughness, strength at room temperature and elevated temperature and even sinterability can all be improved by adopting such an approach.


2003 ◽  
Vol 419-422 ◽  
pp. 237-242 ◽  
Author(s):  
R. Ohyama ◽  
Junichi Koike ◽  
T. Kobayashi ◽  
Mayumi Suzuki ◽  
Kouichi Maruyama

Sign in / Sign up

Export Citation Format

Share Document