Integrated Heterostructure Devices (IHDS): A New Approach for the Fabrication of High-Efficiency Blue/Green Light Emitters Based on II-VI Materials

1992 ◽  
Vol 281 ◽  
Author(s):  
Y. Lansari ◽  
Z. Yu ◽  
J. Ren ◽  
C. Boney ◽  
J. W. Cook ◽  
...  

ABSTRACTIntegrated heterostructure devices (IHDs) comprised of II-VI materials in multi-layered structures for light emitting diode (LED) and laser diode (LD) applications are described. These IHDs combine a light emission multilayer structure (wide band gap II-VI layers) with an abrupt or graded heterostructure (comprised of narrow band gap II-VI layers) for improved ohmic contact to the upper p-type layer of the light emitting structure.

2003 ◽  
Vol 789 ◽  
Author(s):  
Michael Cross ◽  
Walter Varhue

ABSTRACT: One of the major shortcomings of silicon (Si) as a semiconductor material is its inability to yield efficient light emission. There has been a continued interest in adding rare earth ion impurities such as erbium (Er) to the Si lattice to act as light emitting centers. The low band gap of Si however has complicated this practice by quenching and absorbing this possible emission. Increasing the band gap of the host has been successfully tried in the case of gallium nitride (GaN) [1] and Si-rich oxide (SRO) [2] alloys. A similar approach has been tried here, where Er oxide (ErOx) nanocrystals have been formed in a yttria stabilized zirconia (YSZ) host deposited on a Si (100) substrate. The YSZ is deposited as a heteroepitaxial, insulating layer on the Si substrate by a reactive sputtering technique. The Er is also incorporated by a sputtering process from a metallic target and its placement in the YSZ host can be easily controlled. The device structure formed is a simple metal contact/insulator/phosphor sandwich. The device has been found to emit visible green light at low bias voltages. The advantage of this material is that it is much more structured than SiO2 which can theoretically lead to higher emission intensity.


2021 ◽  
Author(s):  
Tianyang Zhang ◽  
Xiao Wang ◽  
Zhenyu Wu ◽  
Tianyu Yang ◽  
Han Zhao ◽  
...  

Blue light-emitting diode (LED) has always been a tough problem for the display and illumination. Inorganic/organic semiconductors and carbon dots (CDs) with wide band gap still undergo the obstacles of...


Nanoscale ◽  
2019 ◽  
Vol 11 (47) ◽  
pp. 22899-22906 ◽  
Author(s):  
Miao He ◽  
Chunyun Wang ◽  
Jingzhou Li ◽  
Jiang Wu ◽  
Siwei Zhang ◽  
...  

All-inorganic perovskite CsPbBr3–Cs4PbBr6 composite nanocrystals (NCs) were synthesized via a convenient solution process without inert gas protection and systematically studied as green phosphors for light emitting diode (LED) applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jun Wang ◽  
Jun Gou ◽  
Weizhi Li

Stable green light emission and high efficiency organic devices with three polymer layers were fabricated using bis[2-(4′-tert-butylphenyl)-1-phenyl-1H-benzoimidazole-N,C2′] iridium(III) (acetylacetonate) doped in blended host materials. The 1 wt% doping concentration showed maximum luminance of 7841 cd/cm2at 25.6 V and maximum current efficiency of 9.95 cd/A at 17.2 V. The electroluminescence spectra of devices indicated two main peaks at 522 nm and 554 nm coming from phosphor dye and a full width at half maximum (FWHM) of 116 nm. The characteristics of using blended host, doping iridium complex, emission spectrum, and power efficiency of organic devices were investigated.


2012 ◽  
Vol 557-559 ◽  
pp. 776-780
Author(s):  
Yi Bo Chen ◽  
Wei Cai ◽  
Yong Qiao Liu ◽  
Meng Lian Gong

Low temperature-quenching and high-efficiency Ca3Sc2Si3O12:1%Ce3+, x%Ba2+ phosphors were prepared by solid state method and the properties of these phosphors were investigated. The results showed that co-doping of Ba2+ ions can improve the photoluminescence properties and decrease temperature-quenching of Ca3Sc2Si3O12:Ce3+ phosphor obviously. High-efficiency blue-green light-emitting diode was fabricated with the prepared phosphor and an InGaN blue-emitting (~460 nm) chip. Good performance of the prepared LED indicates that Ca3Sc2Si3O12:1%Ce3+, 0.5%Ba2+ phosphor is a suitable candidate for the fabrication of high-efficiency white LEDs.


2002 ◽  
Vol 744 ◽  
Author(s):  
Jianhua Zhao ◽  
Aihua Wang ◽  
Thorsten Trupke ◽  
Martin A. Green

ABSTRACTA high power conversion efficiency above 1% from a bulk crystalline silicon (c-Si) light-emitting diode (LED) has been demonstrated at near room temperature. These devices are based on normally weak one- and two-phonon assisted sub-bandgap light emission processes. Their improved performance results from device designs that take advantage of enhanced light absorption by a light trapping scheme which was developed for high efficiency silicon solar cells, and from reducing scope for parasitic non-radiative recombination within the diode. Each feature individually is shown to improve efficiency by a factor of ten, accounting for an improvement by factor of one hundred compared to baseline devices.Also demonstrated is a greatly improved band-edge light emission and detection using bulk c-Si diodes. A bulk c-Si LED is combined with a similar diode used as a detector that collects the light emitted with a high quantum collection efficiency of 33%, to produce a silicon to silicon optically coupled system that demonstrates 0.18% coupling quantum efficiency. The crystalline silicon LED demonstrates similarly high performance at very low power levels, where it has even higher power efficiency than a high efficiency GaAlAs LED.


1997 ◽  
Vol 91 (1-3) ◽  
pp. 321-322 ◽  
Author(s):  
Zhiyong Hong ◽  
Daike Wang ◽  
Dongge Ma ◽  
Xiaojiang Zhao ◽  
Xiabin Jing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document