Critical Conditions for Initiation of Localized Corrosion of Mild Steels in Contact with Bentonite Used in Geological Disposal Packages of Nuclear Waste

1992 ◽  
Vol 294 ◽  
Author(s):  
Guen Nakayama ◽  
Masatsune Akashi

ABSTRACTIn the current design of geological disposal of high-level nuclear waste, the use of bentonite to stand as an artificial barrier-cum-buffer between the host rock and the packages made of mild steel is being investigated. Although mild steels commomly have been considered to be passivity in alkaline environments, under certain circumstances, they become liable to localized corrosion, e.g., pitting corrosion and crevice corrosion. Since bentonite can turn the environment alkaline to a pH of approximately 10 when it is mixed with groundwater, critical conditions for the initiation of localized corrosion of mild steel must be known to evaluate the extremely long time integrity of disposal packages serving in such an environment. This paper presents and discusses the observations and results acquired in a series of critical conditions for the initiation of localized corrosion of mild steels in various groundwater-bentonite environments at 20C, with a deaerated aqueous solution of 1 mMol/L [HCO3−] +10 ppm [CI−], simulating the natural groundwater and varying the bentonite content.

1999 ◽  
Vol 556 ◽  
Author(s):  
D. S. Dunn ◽  
G. A. Cragnolino ◽  
N. Sridhar

AbstractFor the geologic disposal of the high level nuclear waste (HLW), aqueous corrosion is considered to be the most important factor in the long-term performance of containers, which are the main components of the engineered barrier subsystem. Container life, in turn, is important to the overall performance of the repository system. The proposed container designs and materials have evolved to include multiple barriers and highly corrosion resistant Ni-Cr-Mo alloys, such as Alloys 625 and C-22. Calculations of container life require knowledge of the initiation time and growth rate of localized corrosion. In the absence of localized corrosion, the rate of general or uniform dissolution, given by the passive current density of these materials, is needed. The onset of localized corrosion may be predicted by using the repassivation and corrosion potentials of the candidate container materials in the range of expected repository environments. In initial corrosion tests, chloride was identified as the most detrimental anionic species to the performance of Ni-Cr-Mo alloys. Repassivation potential measurements for Alloys 825, 625, and C-22, conducted over a wide range of chloride concentrations and temperatures, are reported. In addition, steady state passive current density, which will determine the container lifetime in the absence of localized corrosion, was measured for Alloy C-22 under various environmental conditions.


1986 ◽  
Vol 84 ◽  
Author(s):  
S. G. Pitman

AbstractIn current conceptual designs, a mild steel (ASTM A?16 Grade WCA) is the relerence container material for use in high level nuclear waste packages intended for emplacement in a salt repository. The resistance of the steel to stress corrosion crackinq (SCC) is being investigated as part of the effort underway to verify the suitability of the material for waste package applications. Static tests (U-bend and bolt-loaded fracture toughness specimens) and dynamic tests (slow strain rate and corrosion fatigue) were conducted on both as-cast and weldment specimens of the material, in both low-Mg and high-Mg halite-saturated brines, in the temperature range of 90 to 200°C. The investigations indicate that the steel is not susceptible to SCC under the test conditions employed.


1991 ◽  
Vol 257 ◽  
Author(s):  
Guen Nakayama ◽  
Masatsune Akashi

ABSTRACTIt has been established that the mild steels which undergo the general corrosion in the acidic to neutral environments, attain the passivity status in alkaline environments, thereby becoming liable to the localized corrosion, such as pitting corrosion and crevice corrosion. Now, for the case of using bentonite as a buffer to stand between the hostrock and the geological disposal packages of high level nuclear waste, localized corrosion behaviors of mild steel as a candidate for such a package has been studied quantitatively for environments where the the otherwise neutral ground water would be turned slightly alkaline with pH = 9.5 - 10.0.In view of the lack of quantitative data on the passivity-to-localized corrosion of mild steel in natural water environments of weak alkalinity, the present authors have previously determined an empirical E-pH diagram for mild steel with a 20 °C, 1 m mol/L [HC03-], 10 ppm [CI -] solution simulating the natural water environment concerned; it has been shown that the general corrosion-to-passivity transition condition was determined to be pHd =9.4, and the mild steel was shown to be liable to localized corrosion over a large portion of the passivity domain. The present paper discusses behaviors, mechanisms, and critical conditions for initiation of localized corrosion in mild steel placed in bentonitesuspending natural water environment, in terms of the critical potentials for pitting (Vc), and crevice corrosion (ER,CREV). Bentonite was addid to the solution in varying amounts to give bentonite-to-solution ratios up to 0.1, while the pHvalue was adjusted appropriately with sodium carbonate, always keeping the bentonite particles in suspension.It is demonstrated that bentonite particles suspended in water will deposit upon the steel on receipt of Fe2 + ions, thereby promoting pitting corrosion by preventing repassivation and promoting crevice corrosion by acting as an effective crevice, once the environment conditions become favorable for localized corrosion.We conclude therefore that disposal package made of mild steel and placed in an underground water environment with bentonite as buffer will be liable to localized corrosion.


2008 ◽  
Vol 59 (2) ◽  
pp. 140-144
Author(s):  
Laurentiu Popa ◽  
Maria Radulescu ◽  
Alice Dinu ◽  
Lucian Velciu ◽  
Ioan Viorel Branzoi

Geological disposal is identified by nearly all experts in the field of waste management as the only safe and sustainable option presently available, but the progress towards its implementation is slow. The nuclear waste must be safely storaged for hundreds of thousand years. Titanium alloys are some of the most promising candidates as container materials for the long-term disposal of high level nuclear waste (HLW) in rock salt formations. In the case of titanium waste containers, between the containers walls and the surrounding buffer material used to pack the disposal borehole some crevices can appear in the welded zone container/ shielding lid, under a biofilm etc. For this purpose we studied the effect of chloride concentration on crevice corrosion of some welded titanium alloys (Grade 2 and Grade 12, respectively) in chloride solutions at 90oC by electrochemical methods (Ecorr vs time, potentiodynamic tests).


1990 ◽  
Vol 212 ◽  
Author(s):  
R. Daniel McCright

ABSTRACTCandidate container materials for high-level nuclear waste packages to be emplaced at the proposed Yucca Mountain repository site are being considered for their long-term resistance to corrosion, oxidation, embrittlement and other kinds of degradation. Selection criteria have been established, and a method has been developed for recommending a material for advanced container design activities. An extensive compilation of the degradation phenomena for six candidate materials is complete, and further studies have begun on the degradation modes affecting additional candidate materials. Phenomenological models for predicting container degradation rates are being advanced for environmental conditions applicable to Yucca Mountain. An experimental program is underway to evaluate the susceptibility of container materials to localized corrosion, stress corrosion cracking, and enhancement of corrosion and oxidation attack by gamma radiation. Initial evaluations of container fabrication and welding processes have identified some processes that appear to alleviate some long-term corrosion susceptibility concerns.


1990 ◽  
Vol 212 ◽  
Author(s):  
Shigeo Tsujikawa ◽  
Yoichi Kojima

ABSTRACTLong term corrosion resistance is evaluated for G-2 and G-12 titanium as a candidate of the high-level nuclear waste packages. The repassivation potential for crevice corrosion, ER, in comparison with the well known spontaneous potential, ESP, of a metal passivated in given environment, allows conclusions to be drawn whether it performs “permanent” or does not. This repassivation method is extended to determine critical conditions in terms of NaCl concentration and temperature for specimens kept at an electrode potential which is more noble than ER and is included in ESP ranges. Thus obtained NaCl concentration - temperature - crevice corrosion map could predict critical conditions for the titanium used in geologic formations.


Author(s):  
Lana L. Wong ◽  
John C. Estill ◽  
David V. Fix ◽  
Rau´l B. Rebak

Yucca Mountain (Nevada) is designated as a high-level nuclear waste repository. The nuclear waste will be isolated by a series of engineered barriers. The metallic engineered barriers will consist of a double-wall container with a detached drip shield. The material for the external wall of the container is Alloy 22, a corrosion-resistant Ni-Cr-Mo alloy. Titanium grade 7 has been proposed for the drip shield. Ti alloys are highly resistant to all forms of corrosion due to the formation of a stable, protective and strongly adherent oxide film. The aim of this research was to characterize the general and localized corrosion behavior of Ti Gr 7, 16 and 12 in simulated concentrated ground waters. Welded and non-welded coupons were exposed for up to 5 years to the vapor and liquid phases of acidic and alkaline multi-ionic solutions at 60°C and 90°C. This paper describes the results obtained after approximately 2-1/2- to 5-1/2-year exposure to the testing electrolyte solutions. In general, the highest corrosion rate was obtained for Ti Gr 12; however, in all of the tested conditions, the corrosion rate was generally lower than 100 nm/yr. For all alloys, the highest corrosion rate was obtained in the concentrated alkaline solution.


Sign in / Sign up

Export Citation Format

Share Document