Corrosion Model Validation in High Level Nuclear Waste Package Research

1992 ◽  
Vol 294 ◽  
Author(s):  
M. B. Mcneil ◽  
J.B. Moody

ABSTRACTThe strategies for waste package (WP) performance validation will be based on site specific geologic and hydrogeochemical information plus models which can be used to predict potential WP lifetimes. The development and application of such models will include the evaluation of natural analogues (NA). These analogues are needed to resolve issues related to the validation of models. Natural analogues have not had extensive use or widespread acceptance in the area of waste package failure prediction. This lack of acceptance is due to the anticipated choice of alloys for waste package containers. Few of these alloys are similar to naturally occurring metals, and the proposed HLW repositories are in general in geologic settings not very similar to those in which naturally occurring metals are generally found.Natural and archaeological analogues can be used, however, in analysis of possible waste package failures as a means of testing proposed models for failure. In fact, the analogues are the only available mechanisms for testing models of long-term waste package behavior. A strategy is outlined for incorporating natural and archaeological analogue studies into waste package research, and examples are discussed. The natural/archaeological analogues approach which appears most promising is to use archaeological and mineral samples to develop an understanding of the identities and rates of the mineral alteration reactions at or near the surface of the package, improving present capability for estmating the lifetimes of metallic waste package containers.

1990 ◽  
Vol 212 ◽  
Author(s):  
Charles G. Interrante ◽  
Carla A. Messina ◽  
Anna C. Fraker

ABSTRACTThe work reported here is part of a program conducted by the Nuclear Regulatory Commission on the efficacy of proposed plans for radionuclide containment for long-term storage of high-level nuclear waste (HLW). An important element of that program is the review and evaluation of available literature on components of a waste package. A review process and a database have been developed and tailored to provide information quickly to an individual who has a question about a particular material or component of a waste package. The database is uniquely suited to serve as a guide to indicate special areas where data and information needs exist on questions related to radionuclide containment. Additions to the database are made as information becomes available, and this source is as current as the published literature. A description of the review process and the database is given.


1993 ◽  
Vol 333 ◽  
Author(s):  
James J. Mazer

ABSTRACTThe common observation of glasses persisting in natural environments for long periods of time (up to tens of millions of years) provides compelling evidence that these materials can be kinetically stable in a variety of subsurface environments. This paper reviews how natural and historical synthesized glasses can be employed as natural analogues for understanding and projecting the long-term alteration of high-level nuclear waste glasses. The corrosion of basaltic glass results in many of the same alteration features found in laboratory testing of the corrosion of high-level radioactive waste glasses. Evidence has also been found indicating similarities in the rate controlling processes, such as the effects of silica concentration on corrosion in groundwater and in laboratory leachates. Naturally altered rhyolitic glasses and tektites provide additional evidence that can be used to constrain estimates of long-term waste glass alteration. When reacted under conditions where water is plentiful, the corrosion for these glasses is dominated by network hydrolysis, while the corrosion is dominated by molecular water diffusion and secondary mineral formation under conditions where water contact is intermittent or where water is relatively scarce. Synthesized glasses that have been naturally altered result in alkali-depleted alteration features that are similar to those found for natural glasses and for nuclear waste glasses. The characteristics of these alteration features appear to be dependent on the alteration conditions which affect the dominant reaction processes during weathering. In all cases, care must be taken to ensure that the information being provided by natural analogues is related to nuclear waste glass corrosion in a clear and meaningful way.


2002 ◽  
Vol 713 ◽  
Author(s):  
Joon H. Lee ◽  
Kevin G. Mon ◽  
Dennis E. Longsine ◽  
Bryan E. Bullard ◽  
Ahmed M. Moniba

ABSTRACTThe technical basis for Site Recommendation (SR) of the potential repository for high-level nuclear waste at Yucca Mountain, Nevada has been completed. Long-term containment of the waste and subsequent slow release of radionuclides from the engineered barrier system (EBS) into the geosphere will rely on a robust waste package (WP) design, among other EBS components as well as the natural barrier system. The WP and drip shield (DS) degradation analyses for the total system performance assessment (TSPA) baseline model for the SR have shown that, based on the current corrosion models and assumptions, both the DSs and WPs do not fail within the regulatory compliance time period (10,000 years). From the perspective of initial WP failure time, the analysis results are encouraging because the upper bounds of the baseline case are likely to represent the worst case combination of key corrosion model parameters that significantly affect long-term performance of WPs in the potential repository. The estimated long life-time of the WPs in the current analysis is attributed mostly to the following two factors that delay the onset of stress corrosion cracking (SCC): (1) the stress mitigation to substantial depths from the outer surface in the dual closure-lid weld regions; and (2) the very low general-corrosion rate applied to the closure-lid weld regions to corrode the compressive stress zones. Uncertainties are associated with the current WP SCC analysis. These are stress mitigation on the closure-lid welds, characterization of manufacturing flaws applied to SCC, and general corrosion rate applied to the closurelid weld regions. These uncertainties are expected to be reduced as additional data and analyses are developed.


Author(s):  
Mostafa Fayek ◽  
Julie Brown

ABSTRACT Projects involving deep geological disposal of nuclear waste are unique in that predictive models of long-term safety often involve geological timeframes. This manuscript provides a review of natural and anthropogenic analogues for high-level nuclear waste disposal in a deep geological repository. We also occasionally highlight analogues that have been used for low- and intermediate-level waste. Most studies define natural analogues as either naturally occurring or anthropogenic systems. In this paper, we distinguish between natural analogues and anthropogenic analogues because the latter generally provide non-technical (anecdotal) illustrations of concepts and processes for the safety case, whereas the former can provide technical and quantitative information. In addition, natural analogues can provide information over geological time scales (millions of years) and spatial scales (kilometers), whereas anthropogenic analogues provide information over a much more limited time scale (hundreds or thousands of years). Regardless of the definition, analogue studies provide one of the multiple lines of evidence intended to increase confidence in the safe geological disposal of high-level nuclear waste. They are deemed necessary because they complement the experiments that are carried out over a period of months or years. They also provide a way to validate numerical long-term safety assessment models with information and data covering geological time scales and spatial scales. The first part of this review describes the analogue concept. The second and third parts provide examples of natural and anthropogenic analogues for engineered barrier systems and natural barriers. Part four describes analogues for complex coupled transport processes. Finally, we discuss general and specific areas of future research. A concerted effort should be made to ensure that there is a transfer of data from the complex, natural analogue field studies to simplistic models which, by necessity, are used to evaluate the long-term safety of deep geological repositories. Field analogue studies should be planned to interface with laboratory experiments and, ultimately, with in situ field experiments, when the final repository site is selected. This will involve using natural analogue data in a quantitative way to support the deep geological repository safety case.


1983 ◽  
Vol 26 ◽  
Author(s):  
C. Pescatore ◽  
C. Sastre

ABSTRACTProof of future performance of a complex system such as a high-level nuclear waste package over a period of hundreds to thousands of years cannot be had in the ordinary sense of the word. The general method of probabilistic reliability analysis could provide an acceptable framework to identify, organize, and convey the information necessary to satisfy the criterion of reasonable assurance of waste package performance according to the regulatory requirements set forth in 10 CFR 60. General principles which may be used to evaluate the qualitative and quantitative reliability of a waste package design are indicated and illustrated with a sample calculation of a repository concept in basalt.


2004 ◽  
Vol 824 ◽  
Author(s):  
Mark Sutton ◽  
Maureen Alai ◽  
Susan Carroll

AbstractThe evaporation of a range of synthetic pore water solutions representative of the potential high-level-nuclear-waste repository at Yucca Mountain, NV is being investigated. The motivation of this work is to understand and predict the range of brine compositions that may contact the wastecontainers from evaporation of pore waters, because these brines could form corrosive thin films on the containers and impact their long-term integrity. A relatively complex synthetic Topopah Spring Tuff pore water was progressively concentrated by evaporation in a closed vessel, heated to 95°C in a series of sequential experiments. Periodic samples of the evaporating solution were taken to determine the evolving water chemistry. According to chemical divide theory at 25°C and 95°C our starting solution should evolve towards a high pH carbonate brine. Results at 95°C show that this solution evolves towardsa complex brinethat contains about 99 mol% Na+for the cations, and 71 mol% Cl-, 18 mol% ΣCO2(aq), 9 mol% SO42- for the anions. Initial modeling ofthe evaporating solution indicates precipitation of aragonite, halite, silica, sulfate and fluoride phases. The experiments have been used to benchmark the use of the EQ3/6 geochemical code in predicting the evolution of carbonate-rich brines during evaporation.


1990 ◽  
Vol 212 ◽  
Author(s):  
D. E. Grandstaff ◽  
V. J. Grassi ◽  
A. C. Lee ◽  
G. C. Ulmer

ABSTRACTSystematic differences in pH, cation/proton ion activity ratios, and redox have been observed between solutions produced in rock-water hydrothermal experiments with tuff, granite, and basalt. Stable pH values in tuff-water experiments may be as much as 1.5 pH units more acidic than basalt-water experiments at the same temperature and ionic strength. Redox (log fO2) values in 300°C tuff experiments are 4–7 orders of magnitude more oxidizing than basalt experiments and ca. 4 log units more oxidizing than the magnetite-hematite buffer. Such fluid differences could significantly affect the performance of a high-level nuclear waste repository and should be considered in repository design and siting.


2002 ◽  
Vol 757 ◽  
Author(s):  
Maureen Alai ◽  
Susan Carroll

ABSTRACTWe are investigating the evaporation of pore water representative of the designated high-level-nuclear-waste repository at Yucca Mountain, NV to predict the range of brine compositions that may contact waste containers. These brines could form potentially corrosive thin films on the containers and impact their long-term integrity. Here we report the geochemistry of a relatively complex synthetic Topopah Spring Tuff pore water that was progressively evaporated in a series of experiments. The experiments were conducted in a vented vessel in which HEPA filtered air flowed over the 95°C solution. Samples of the evaporating solution and the condensed vapor were taken and analyzed to determine the evolving water chemistry and gas volatility. The final solid was analyzed by X-ray diffraction.The synthetic Topopah Spring Tuff water evolved towards a complex brine that contained about 45 mol % Cl, 7 mol% NO3, 43 mol% Na, 4 mol % K, and less than 1 mol % each of SO4, Ca, Mg, HCO3 and Si. Trends in the solution data and identification of CaSO4 solids suggest that fluorite, carbonate, sulfate, and Mg-silicate precipitation minimize the corrosion potential of “sulfate type pore water” by removing F, Ca, and Mg during the early stages of evaporation.


Author(s):  
Jerzy Narbutt

<p>Recycling of actinides from spent nuclear fuel by their selective separation followed by transmutation in fast reactors will optimize the use of natural uranium resources and minimize the long-term hazard from high-level nuclear waste. This paper describes solvent extraction processes recently developed, aimed at the separation of americium from lanthanide fission products as well as from curium present in the waste. Depicted are novel poly-N-heterocyclic ligands used as selective extractants of actinide ions from nitric acid solutions or as actinide-selective hydrophilic stripping agents.</p>


Sign in / Sign up

Export Citation Format

Share Document