Layer by Layer Amorphization in Si: Temperature, Ion Mass and Flux Effects

1993 ◽  
Vol 321 ◽  
Author(s):  
A. Battaglia ◽  
G. Romano ◽  
S. U. Campisano

ABSTRACTThe layer-by-layer amorphization process is explored in a temperature range in which the kinetics of crystallization can be neglected. It has been found that the pure amorphization rate increases exponentially as the substrate temperature is decreased with an apparent activation energy of 0.48 eV. Moreover the rate increases with both the ion flux and the energy deposited into elastic collisions. A phenomenological model is proposed to explain the experimental results.

1993 ◽  
Vol 316 ◽  
Author(s):  
A. Battaglia ◽  
G. Romano ◽  
S.U. Campisano

ABSTRACTThe layer-by-layer amorphization process is explored in a temperature range in which the kinetics of crystallization can be neglected. It has been found that the pure amorphization rate increases exponentially as the substrate temperature is decreased with an apparent activation energy of 0.48 eV. Moreover the rate increases with both the ion flux and the energy deposited into elastic collisions. A phenomenological model is proposed to explain the experimental results.


BioResources ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1958-1979
Author(s):  
Bingtao Hu ◽  
Zhaolin Gu ◽  
Junwei Su ◽  
Zhijian Li

Wheat straw produced annually in the Shaanxi Guanzhong region is a potential biomass feedstock for the production of transportation fuels and specialized chemicals through combustion, pyrolysis, or gasification. In this work, the pyrolytic characteristics, evolved gas products, and kinetics of Guanzhong wheat straw and its components were first investigated with a thermogravimetry-Fourier infrared spectroscopy (TG-FTIR) system. A comparative kinetic study was conducted using different model-free methods of Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), Kissinger, and the Coats-Redfern methods. The main pyrolysis products identified by FTIR include H2O, CH4, CO2, and CO as well as aromatics, acids, ketones, and aldehydes. Kinetic results showed that the pyrolytic apparent activation energy of the straw is approximately 200 kJ/mol obtained via FWO and KAS methods at the conversion range of 0.4 to 0.75, which was 30 kJ/mol higher than the value 171.1 kJ/mol obtained by the Kissinger method. The apparent activation energy of cellulose in its main pyrolysis region is 135.5 kJ/mol and is about three times larger than that of hemicellulose (49.5 kJ/mol). The apparent activation energy of lignin at the temperature range of 45 to 116 °C was 34.5 kJ/mol, while that value at the temperature range of 120 to 252 °C was 6.64 kJ/mol.


1972 ◽  
Vol 27 (6) ◽  
pp. 1020-1022 ◽  
Author(s):  
G. Flor ◽  
V. Massarotti ◽  
R. Riccardi

AbstractThe solid state reaction MoO3 + SrCO3 → SrMoO4+ CO2 has been studied on mixtures of powdered reagents. Thermogravimetric measurements in the temperature range 412° -498 °C have been made on different mixtures and under different atmospheres. Moreover, optical observations and conductometric measurements have been carried out. The results show that the reaction is governed by a diffusion mechanism with an apparent activation energy of (60 ± 1) kcal/mole and that the main diffusing species is the Mo6+ ion.


1950 ◽  
Vol 28b (7) ◽  
pp. 358-372
Author(s):  
Cyrias Ouellet ◽  
Adrien E. Léger

The kinetics of the polymerization of acetylene to cuprene on a copper catalyst between 200° and 300 °C. have been studied manometrically in a static system. The maximum velocity of the autocatalytic reaction shows a first-order dependence upon acetylene pressure. The reaction is retarded in the presence of small amounts of oxygen but accelerated by preoxidation of the catalyst. The apparent activation energy, of about 10 kcal. per mole for cuprene growth between 210° and 280 °C., changes to about 40 kcal. per mole above 280 °C. at which temperature a second reaction seems to set in. Hydrogen, carbon monoxide, or nitric oxide has no effect on the reaction velocity. Series of five successive seedings have been obtained with cuprene originally grown on cuprite, and show an effect of aging of the cuprene.


2014 ◽  
Vol 50 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Y. Wang ◽  
L. Wang ◽  
J. Yu ◽  
K.C. Chou

In order to optimize the current reduction process of chromite, a good knowledge of reduction mechanism involved is required. The basic component in chromite ore is FeCr2O4, thus, kinetic investigation of synthetic FeCr2O4 with different amount of carbon were carried out in the temperature range of 1473K to 1673K under both isothermal and non-isothermal mode. The iron can be easily reduced compared with chromium. And higher reduction degree of chromite can be achieved by increasing temperature and carbon content. With the supporting of X-ray Diffraction and Scanning Electron Microscope methods, the formation of metallic products followed the sequence: Fe-C alloy, (Fe,Cr)7C3and Fe-Cr-C alloy. Kinetics analysis showed that the first stage was controlled by nucleation with an apparent activation energy of 120kJ/mol, while the chromium reduction was controlled by crystallochemical transformation with an apparent activation energy of 288kJ/mol.


1967 ◽  
Vol 45 (1) ◽  
pp. 11-16 ◽  
Author(s):  
G. A. Latrèmouille ◽  
A. M. Eastham

Isobutene reacts readily with excess trifluoroacetic acid in ethylene dichloride solution at ordinary temperatures to give t-butyl trifluoroacetate. The rate of the reaction is given, within the range of the experiments, by the expression d[ester]/dt = k[acid]2[olefin], and the apparent activation energy is about 6 kcal/mole. The rate of addition is markedly dependent on the strength of the reacting acid and is drastically reduced in the presence of mildly basic materials, such as dioxane. The boron fluoride catalyzed addition of acetic acid to 2-butene can be considered to follow a similar rate law, i.e. d[ester]/dt = k[acid·BF3]2[olefin], but only if some assumptions are made about the position of the equilibrium [Formula: see text]since only the 1:1 complex is reactive.


Holzforschung ◽  
2017 ◽  
Vol 71 (3) ◽  
pp. 233-240 ◽  
Author(s):  
Ke-Chang Hung ◽  
Jyh-Horng Wu

Abstract Wood-SiO2 composites (WSiO2Cs) were prepared by means of the sol-gel process with methyltrimethoxysilane (MTMOS) as a reagent, and the physical properties, structure and thermal decomposition kinetics of the composites has been evaluated. The dimensional stability of the WSiO2Cs was better than that of unmodified wood, especially in terms of the weight percent gain (WPG), which achieved values up to 30%. The 29Si-NMR spectra show two different siloxane peaks (T2 and T3), which supports the theory about the formation of MTMOS network structures. Thermal decomposition experiments were also carried out in a TG analyzer under a nitrogen atmosphere. The apparent activation energy was determined according to the iso-conversional methods of Friedman, Flynn-Wall-Ozawa, modified Coats-Redfern, and Starink. The apparent activation energy between 10 and 70% conversion is 147–172, 170–291, 189–251, and 192–248 kJ mol−1 for wood and WSiO2Cs with WPGs of 10, 20, and 30%, respectively. However, the reaction order between 10 and 70% conversion calculated by the Avrami theory was 0.50–0.56, 0.35–0.45, 0.33–0.44, and 0.28–0.48. These results indicate that the dimensional and thermal stability of the wood could be effectively enhanced by MTMOS treatment.


1998 ◽  
Vol 527 ◽  
Author(s):  
O.E. Kaportseva ◽  
L.V. Yashina ◽  
V.B. Bobruiko ◽  
D.V. Safonov ◽  
V.F. Kozlovsky ◽  
...  

ABSTRACTThis work is devoted to the study of Ge diffusion in crystalline Sn1-δTe1+8 with δ=0.0065±0.0008 in temperature range T=878-973 K by electron probe microanalysis and layer by layer X-ray analysis. For the latter lattice constant dependence on composition was determined: a(Å)=a(SnTe)-(0.368±0.008)× where 0<×<0. 1. Activation energy was found to be about 1.3 eV, much less than in the case of Ge diffusion in PbTe.


RSC Advances ◽  
2016 ◽  
Vol 6 (54) ◽  
pp. 48580-48588 ◽  
Author(s):  
Wanggang Zhang ◽  
Yiming Liu ◽  
Diaoyu Zhou ◽  
Jing Wen ◽  
Liuwei Zheng ◽  
...  

Heating treatment leads to the diffusion of Au into TiO2 nanotube arrays and the formation of Au nanocrystals. The activation energy for the Au diffusion on the surface of the TiO2 nanotubes in the temperature range of 400 to 500 °C is 67.2 kJ mol−1.


Sign in / Sign up

Export Citation Format

Share Document