Cinnamic acid hydrogen bonds to isoniazid andN′-(propan-2-ylidene)isonicotinohydrazide, anin situreaction product of isoniazid and acetone

2014 ◽  
Vol 70 (4) ◽  
pp. 392-395 ◽  
Author(s):  
Inese Sarcevica ◽  
Liana Orola ◽  
Mikelis V. Veidis ◽  
Sergey Belyakov

A new polymorph of the cinnamic acid–isoniazid cocrystal has been prepared by slow evaporation, namely cinnamic acid–pyridine-4-carbohydrazide (1/1), C9H8O2·C6H7N3O. The crystal structure is characterized by a hydrogen-bonded tetrameric arrangement of two molecules of isoniazid and two of cinnamic acid. Possible modification of the hydrogen bonding was investigated by changing the hydrazide group of isoniazidviaanin situreaction with acetone and cocrystallization with cinnamic acid. In the structure of cinnamic acid–N′-(propan-2-ylidene)isonicotinohydrazide (1/1), C9H8O2·C9H11N3O, carboxylic acid–pyridine O—H...N and hydrazide–hydrazide N—H...O hydrogen bonds are formed.

Author(s):  
Ping Su ◽  
Xue-gang Song ◽  
Ren-qiang Sun ◽  
Xing-man Xu

The asymmetric unit of the title organic salt [systematic name: 1H-pyrazol-2-ium 2,4,6-trinitrophenolate–1H-pyrazole (1/1)], H(C3H4N2)2+·C6H2N3O7−, consists of one picrate anion and one hydrogen-bonded dimer of a pyrazolium monocation. The H atom involved in the dimer N—H...N hydrogen bond is disordered over both symmetry-unique pyrazole molecules with occupancies of 0.52 (5) and 0.48 (5). In the crystal, the component ions are linked into chains along [100] by two different bifurcated N—H...(O,O) hydrogen bonds. In addition, weak C—H...O hydrogen bonds link inversion-related chains, forming columns along [100].


2003 ◽  
Vol 58 (1) ◽  
pp. 74-84 ◽  
Author(s):  
Giannis S. Papaefstathiou ◽  
Robby Keuleers ◽  
Constantinos J. Milios ◽  
Catherine P. Raptopoulou ◽  
Aris Terzis ◽  
...  

AbstractThe ligand N.N'-dimethylurea (DMU) is used to propagate the octahedral coordination geom- etry of [Co(DMU)6]2+ into 1D and 2D assemblies via a combination of coordinative bonds and interionic hydrogen-bonding. Compounds [Co(DMU)6](ClO4)2 (1), [Co(DMU)6](BF4)2 (2) and [Co(DMU)6](NO3)2 (3) have been prepared from the reactions of DMU and the appropriate hydrated cobalt(II) salts in EtOH. MeCN or Me2CO (only for 1) in the presence of 2,2-di- methoxypropane. Crystal structure determinations demonstrate the existence of [Co(DMU)6]2+ cations and CIO4- , BF4- or NO3- counterions. The great stability of the [Co(DMU)6]2+ cation in the solid state is attributed to a pseudochelate effect which arises from the existence of strong intracationic N-H···O(DMU) hydrogen bonds. The [Co(DMU)6]2+ cations and counterions self- assemble to form a hydrogen-bonded ID architecture in 1, and different 2D hydrogen-bonded networks in 2 and 3. The precise nature of the resulting supramolecular structure is influenced by the nature of the counterion. Two main motifs of intermolecular (interionic) hydrogen bonds have been observed: N-H ···O(ClO4-, NO3-) or N-H ··· F(BF4-) and weak C-H F(BF4- ) or C-H-O(NO3- ) hydrogen bonds. The complexes were also characterized by vibrational spec- troscopy (IR, far-IR. low-frequency Raman). The spectroscopic data are discussed in terms of the nature of bonding and the know;n structures.


2015 ◽  
Vol 71 (3) ◽  
pp. o145-o145 ◽  
Author(s):  
Muhammad Danish ◽  
Muhammad Nawaz Tahir ◽  
Asif Hussain ◽  
Muhammad Ashfaq ◽  
Muhammad Nadeem Sadiq

The title compound, C18H21NO4S, is a new sulfonamide derivative of tranexamic acid. In the crystal, molecules form inversion dimersviaO—H...O hydrogen bonds involving the carboxylic acid groups. Hydrogen bonding between the sulfonamide N—H group and the carboxylic acid O atom assembles the dimers into thick layers parallel to (100). The naphthalene groups of adjacent layers are arranged in a herring-bone motif. There are C—H...π interactions between the naphthalene rings of neighbouring layers.


Author(s):  
Kostiantyn V. Domasevitch ◽  
Ganna A. Senchyk ◽  
Andrey B. Lysenko ◽  
Eduard B. Rusanov

The structure of the title salt, ammonium carbamoylcyanonitrosomethanide, NH4 +·C3H2N3O2 −, features the co-existence of different hydrogen-bonding patterns, which are specific to each of the three functional groups (nitroso, carbamoyl and cyano) of the methanide anion. The nitroso O-atoms accept as many as three N—H...O bonds from the ammonium cations [N...O = 2.688 (3)–3.000 (3) Å] to form chains of fused rhombs [(NH4)(O)2]. The most prominent bonds of the carbamoyl groups are mutual and they yield 21 helices [N...O = 2.903 (2) Å], whereas the cyano N-atoms accept hydrogen bonds from sterically less accessible carbamoyl H-atoms [N...N = 3.004 (3) Å]. Two weaker NH4 +...O=C bonds [N...O = 3.021 (2), 3.017 (2) Å] complete the hydrogen-bonded environment of the carbamoyl groups. A Hirshfeld surface analysis indicates that the most important interactions are overwhelmingly O...H/H...O and N...H/H...N, in total accounting for 64.1% of the contacts for the individual anions. The relatively simple scheme of these interactions allows the delineation of the supramolecular synthons, which may be applicable to crystal engineering of hydrogen-bonded solids containing polyfunctional methanide anions.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1826-C1826
Author(s):  
Prof. Emmanuel Marfo-Owusu ◽  
Dr. Amber Thompson

The crystal structure of 1:1:1 complex of chloranilic acid with benzimidazole and water determined by X-ray diffraction methods is reported. It crystallizes in the monoclinic (space group, P21/c) crystal system. Both chloranilic acid and benzimidazole molecules adopt a face-to-face stacking arrangement along the b-axis. An interaction beween adjacent layers is a π...π stacking interactions between chloranilic acid molecules. The dihedral angle between the interacting chloranilic acid ring planes is only 1.22 (7)0with an interplanar spacing between C10...C12 (3.383 (16) Å) and C13...C15 (3.351 (14) Å ). Water influences proton transfer in the hydrogen bonded charge transfer complex, and contributes to generating increased number of hydrogen bonds utilized in the stabilzaation of the crystal structure of the complex. Water serves as an efficient bridge between the chloranilic acid molecules through O-H...O intermolecular hydrogen bonds to form a zigzag channel, as well as directly linking chloranilic acid molecules with benzimidazole molecules which are strongly entrapped within the zigzag channel by intermolecular hydrogen bonding network involving the N-H...O, C-H...O, and C-H...Cl interactions. In the chloranilate anion structure, an intramolecular hydrogen bonding involving O2-H7 and O1 (dO2... O1 and dH7... O1 = 2.670 (12) and 2.25 Å) occurs. The supramolecular architecture of the hydrogen bonded charge complex exhibits a three-dimensional hydrogen bonding network


Meso erythritol forms a tetragonal structure in which the molecules are centro-symmetric. Each α -hydroxyl group forms part of a tetragonal spiral of hydrogen bonds. These spirals alone are sufficient to link all the molecules of the crystal into a three-dimensional hydrogen-bonded complex. The β -hydroxyl groups of neighbouring molecules form closed circuits of four hydrogen bonds in a tetrahedron so flattened as to be almost a square. These closed circuits are also by themselves sufficient to link all molecules in the crystal into a three-dimensional complex. When some of the hydroxyl groups are replaced by fluorine atoms of approximately the same size, the main structure should be retained if sufficient hydrogen bonding is left. It is possible, therefore, to predict structures for meso , d , l and racemic forms of some of the fluoro-substituted derivatives. 2-deoxy-2-fluoro (±) erythritol has been examined and found to have the expected racemic structure. The possibility of forms transitional between dextro , racemic, and laevo , is discussed.


2021 ◽  
pp. 1-8
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tofacitinib dihydrogen citrate (tofacitinib citrate) has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Tofacitinib dihydrogen citrate crystallizes in space group P212121 (#19) with a = 5.91113(1), b = 12.93131(3), c = 30.43499(7) Å, V = 2326.411(6) Å3, and Z = 4. The crystal structure consists of corrugated layers perpendicular to the c-axis. Within the layers, cation⋯anion and anion⋯anion hydrogen bonds link the fragments into a two-dimensional network parallel to the ab-plane. Between the layers, there are only van der Waals contacts. A terminal carboxylic acid group in the citrate anion forms a strong charge-assisted hydrogen bond to the ionized central carboxylate group. The other carboxylic acid acts as a donor to the carbonyl group of the cation. The citrate hydroxy group forms an intramolecular charge-assisted hydrogen bond to the ionized central carboxylate. Two protonated nitrogen atoms in the cation act as donors to the ionized central carboxylate of the anion. These hydrogen bonds form a ring with the graph set symbol R2,2(8). The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2015 ◽  
Vol 71 (11) ◽  
pp. 1384-1387
Author(s):  
Marwen Chouri ◽  
Habib Boughzala

The title compound bis(1,4-diazoniabicyclo[2.2.2]octane) di-μ-chlorido-bis[tetrachloridobismuthate(III)] dihydrate, (C6H14N2)2[Bi2Cl10]·2H2O, was obtained by slow evaporation at room temperature of a hydrochloric aqueous solution (pH = 1) containing bismuth(III) nitrate and 1,4-diazabicyclo[2.2.2]octane (DABCO) in a 1:2 molar ratio. The structure displays a two-dimensional arrangement parallel to (100) of isolated [Bi2Cl10]4−bioctahedra (site symmetry -1) separated by layers of organic 1,4-diazoniabicyclo[2.2.2]octane dications [(DABCOH2)2+] and water molecules. O—H...Cl, N—H...O and N—H...Cl hydrogen bonds lead to additional cohesion of the structure.


2006 ◽  
Vol 62 (5) ◽  
pp. o2043-o2044 ◽  
Author(s):  
Shao-Wen Chen ◽  
Han-Dong Yin ◽  
Da-Qi Wang ◽  
Xia Kong ◽  
Xiao-Fang Chen

The crystal structure of the title compound, C14H14ClN3O3 +·Cl−·0.5H2O, exhibits O—H...O, C—H...O, C—H...Cl, N—H...Cl and O—H...Cl hydrogen bonds. The chloride anions participate in extensive hydrogen bonding with the aminium cations and link molecules through multiple N—H+...Cl− interactions.


Sign in / Sign up

Export Citation Format

Share Document