Grazing Incidence X-Ray Reflectance Measurement of Surface and Interface Roughness on the Sub-Nanometre Scale

1994 ◽  
Vol 332 ◽  
Author(s):  
M. Wormington ◽  
K. Sakurai ◽  
D.K. Bowen ◽  
B.K. Tanner

ABSTRACTGrazing incidence X-ray reflectivity may be used to measure surface topography including roughness and correlation lengths to sub-nanometre precision. A study is made of a technically important surface, a carefully-polished specimen of Zerodur glass-ceramic, which has been measured by diffuse scatter of CuKα X-radiation and atomic-force profilometry methods. The data have been analysed in terms of a fractal representation of the surface correlation function. Results from the two methods agreed within their estimated errors, with the X-ray data showing roughnesses of 1.3 nm, correlation length of 1 μm and fractal parameter (bandwidth) of 0.35. The X-ray methods have a lower cut-off length, are much more rapid for averaged information and are both non-contacting and non-destructive. They also show potential for the study of interface roughness in thin films.

1991 ◽  
Vol 239 ◽  
Author(s):  
J. M. Hudson ◽  
A. R. Powell ◽  
D. K. Bowen ◽  
M. Wormington ◽  
B. K. Tanner ◽  
...  

ABSTRACTWe demonstrate the use of x-ray diffraction to provide accurate compositional information, together with grazing incidence reflectivity to provide information on layer thicknesses and surface and interface roughnesses, on Si/Si1-xGex superlattice structures of less than 200nm total thickness.The quality of SiGe interfaces has been investigated in superlattices where x varies from 0.1 to 0.5. At low Ge compositions the interfaces are shown to be smooth to a few angstroms. However, as the Ge composition in the SiGe layer approaches 50%, severe roughness is observed at the SiGe to Si interfaces, although the Si to SiGe interfaces remain relatively smooth.Upon annealing for one hour at 850°C the Ge diffuses outwards from the SiGe layers and can be closely modelled by inclusion of a (2.4±0.3)nm linearly graded layer either side of the SiGe layer into a simulation program. The long range roughness at the SiGe to Si interface is lost upon annealing leaving only a short range roughness of similar size to the Si to SiGe interface roughness.Reflectivity measurements have been shown to distinguish between interface roughness and interdiffusion for the annealed system.


2014 ◽  
Vol 29 (3) ◽  
pp. 265-268 ◽  
Author(s):  
Y. Fujii

In the conventional X-ray reflectivity (XRR) analysis, the reflectivity is calculated based on the Parratt formalism, incorporating the effect of the interface roughness according to Nevot and Croce. However, the results of calculations of the XRR have shown strange outcomes, where interference effects increase at a rough surface because of a lack of consideration of diffuse scattering within the Parratt formalism. Therefore, we have developed a new improved formalism in which the effects of the surface and interface roughness are included correctly. In this study, for deriving a more accurate formalism of XRR, we tried to compare the measurements of surface roughness of the same sample by atomic force microscopy (AFM) and XRR. It is found that the AFM result could not be completely reproduced even with the improved XRR formalism. By careful study of the AFM results, we determined the need for an additional effective roughness term within the XRR simulation that depends on the angle of incidence of the beam.


1996 ◽  
Vol 156 (1-3) ◽  
pp. 109-110 ◽  
Author(s):  
K. Temst ◽  
M.J. Van Bael ◽  
D.G. de Groot ◽  
N.J. Koeman ◽  
R.P. Griessen ◽  
...  

2005 ◽  
Vol 901 ◽  
Author(s):  
Torben Clausen ◽  
Jan-Ingo Flege ◽  
Thomas Schmidt ◽  
Jens Falta

AbstractWe have investigated the Sb surfactant-mediated growth of Ge on Si(113) over the temperature range from 500°C to 700°C. The surface morphology, film thickness, interface roughness and strain state of the films have been determined by the use of scanning electron microscopy, atomic force microscopy and grazing incidence x-ray diffraction. After growth at temperatures between 500°C and 600°C smooth Ge films have been observed, which show a partial strain relaxation. However, increasing the temperature to 700°C, a rough surface with a high density of three-dimensional islands has been found.


1996 ◽  
Vol 440 ◽  
Author(s):  
P. C. Chow ◽  
R. Paniago ◽  
R. Forrest ◽  
S. C. Moss ◽  
S. S. P. Parkin ◽  
...  

AbstractThe growth by sputtering of a series of thin films of Fe/Au on MgO(001) substrates was analyzed using Bragg and diffuse X-ray scattering. The Fe (bcc) layer grows rotated by 45° with respect to the MgO – Au(fcc) (001) epitaxial orientation, resulting in an almost perfect match between the two metallic structures. By collecting the X-ray diffuse scattering under grazing incidence using a 2-dimensional image plate detector, we mapped the reciprocal space of these films. We characterized the correlated interface roughness starting with a buffer of Fe in which only three interfaces are present. The propagation of the roughness was subsequently characterized for Fe/Au multilayers with 40 and 100 bilayers. We observe an enlargement of the surface features as a function of time, evidenced by the longer lateral cutoff length measured for thicker films.


Sign in / Sign up

Export Citation Format

Share Document