A New Method for the Derivation of the Output Characteristics of Amorphous Silicon Thin-Film Transistors.

1994 ◽  
Vol 336 ◽  
Author(s):  
A. Mittiga ◽  
L. Mariucci ◽  
R. Carluccio ◽  
A. Pecorai ◽  
G. Fortunato

ABSTRACTA novel method to derive the output characteristics of a-Si:H thin film transistors from the channel conductance curve is presented. The Method well reproduces the experimental data both in the linear and saturation regimes without using any adjustable parameter. The Method is simple and fast enough to be used in a circuit simulator.

1996 ◽  
Vol 424 ◽  
Author(s):  
A. M. Miri ◽  
P. S. Gudem ◽  
S. G. Chamberlain ◽  
A. Nathan

AbstractConventional high voltage thin-film transistors (HVTFTs) suffer from performance limitations such as low on-current, Vx, shift and large curvature in the linear region of the output characteristics. These limitations are associated with the highly resistive dead region in conventional HVTFT structures. In this paper, we present a novel TFT structure which has a high on-current, improved output characteristics in the linear region, and no Vx shift. The higher on-current and significant improvement in output characteristics allows faster switching. Elimination of the Vx shift leads to more reliable circuit operation. The new structure is based on the conventional low voltage TFT (LVTFT) structure except that it does not suffer from low-voltage breakdown. The low-voltage breakdown of the gate nitride in conventional LVTFTs is perceived to be due to spiking of the drain metallization into the underlying layers which creates regions of very high electric field. In our novel structure, a higher breakdown is achieved by locating the metal contacts away from the gate edge while keeping the necessary drain to gate overlap through a heavily doped microcrystalline layer. Therefore, the new TFT extends the same performance as LVTFTs to high voltage operation. Furthermore, this structure also enhances the yield and reliability by minimizing the common faults in TFTs such as short circuits between gate, source and drain.


1996 ◽  
Vol 420 ◽  
Author(s):  
A. M. Miri ◽  
P. S. Gudem ◽  
S. G. Chamberlain ◽  
A. Nathan

AbstractConventional high voltage thin-film transistors (HVTFTs) suffer from performance limitations such as low on-current, Vx. shift and large curvature in the linear region of the output characteristics. These limitations are associated with the highly resistive dead region in conventional HVTFT structures. In this paper, we present a novel TFT structure which has a high on-current, improved output characteristics in the linear region, and no Vx, shift. The higher on-current and significant improvement in output characteristics allows faster switching. Elimination of the Vx shift leads to more reliable circuit operation. The new structure is based on the conventional low voltage TFT (LVTFT) structure except that it does not suffer from low-voltage breakdown. The low-voltage breakdown of the gate nitride in conventional LVTFTs is perceived to be due to spiking of the drain metallization into the underlying layers which creates regions of very high electric field. In our novel structure, a higher breakdown is achieved by locating the metal contacts away from the gate edge while keeping the necessary drain to gate overlap through a heavily doped microcrystalline layer. Therefore, the new TFT extends the same performance as LVTFTs to high voltage operation. Furthermore, this structure also enhances the yield and reliability by minimizing the common faults in TFTs such as short circuits between gate, source and drain.


1997 ◽  
Vol 36 (Part 1, No. 10) ◽  
pp. 6226-6229 ◽  
Author(s):  
Huang-Chung Cheng ◽  
Jun-Wei Tsai ◽  
Chun-Yao Huang ◽  
Fang-Chen Luo ◽  
Hsing-Chien Tuan

Sign in / Sign up

Export Citation Format

Share Document