A Comparative Study of Nucleation Enhancement Techniques for Plasma Cvd of Diamond Thin Films

1994 ◽  
Vol 349 ◽  
Author(s):  
R.J. Meilunas ◽  
A. Tobin

ABSTRACTThree methods recently proposed for enhancing the nucleation density of thin film diamond on non-diamond surfaces during microwave plasma assisted chemical vapor deposition are investigated. The results of a series of nucleation and growth studies utilizing a dc biasing technique, carbon cluster (C70) thin film overlayers, and thin film metal (Fe) overlayers for diamond nucleation enhancement are presented. The influence of the substrate and plasma processing parameters under which the above nucleation enhancement effects occur has been determined for the three respective techniques.

1999 ◽  
Vol 14 (5) ◽  
pp. 2029-2035
Author(s):  
U. C. Oh ◽  
De Gang Cheng ◽  
Fan Xiu Lu ◽  
Jung Ho Je

The bombarding energy dependence of bonding structure in amorphous carbon interlayer and its effect on diamond nucleation density (Nd) were studied. Amorphous carbon (a-C) interlayer was deposited by magnetron sputtering. Interestingly, the intensity ratio (ID/IG) of the D band (∼1400 cm−1) to the G band (∼1570 cm−1) in the Raman spectra and the optical band gap of the a-C film were found to be inversely proportional to the sputtering power, that is, to bombarding energy. When diamond was subsequently deposited at 800 °C by microwave plasma chemical vapor deposition (CVD), diamond could be grown only on the interlayers with higher ID/IG (≥2.20), and Nd was increased up to 2 × 106/cm2 with the increase of ID/IG ratio, that is, with the decrease of the bombarding energy. We experimentally confirmed that the amount of the sp3 bonded carbon clusters within the interlayer was dependent on the bombarding energy of the particles, determining the diamond nucleation density. We suggest that the transformation of the amorphous carbon into graphitic carbon should be effectively prevented for the diamond nucleation on the a-C interlayer.


1995 ◽  
Vol 10 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Z. Feng ◽  
M.A. Brewer ◽  
K. Komvopoulos ◽  
I.G. Brown ◽  
D.B. Bogy

The efficacy of various non-diamond carbon films as precursors for diamond nucleation on unscratched silicon substrates was investigated with a conventional microwave plasma-enhanced chemical vapor deposition system. Silicon substrates were partially coated with various carbonaceous substances such as clusters consisting of a mixture of C60 and C70, evaporated films of carbon and pure C70, and hard carbon produced by a vacuum are deposition technique. For comparison, diamond nucleation on silicon substrates coated with submicrometer-sized diamond particles and uncoated smooth silicon surfaces was also examined under similar conditions. Except for evaporated carbon films, significantly higher diamond nucleation densities were obtained by subjecting the carbon-coated substrates to a low-temperature high-methane concentration hydrogen plasma treatment prior to diamond nucleation. The highest nucleation density (∼3 × 108 cm−2) was obtained with hard carbon films. Scanning electron microscopy and Raman spectroscopy demonstrated that the diamond nucleation density increased with the film thickness and etching resistance. The higher diamond nucleation density obtained with the vacuum are-deposited carbon films may be attributed to the inherent high etching resistance, presumably resulting from the high content of sp3 atomic bonds. Microscopy observations suggested that diamond nucleation in the presence of non-diamond carbon deposits resulted from carbon layers generated under the pretreatment conditions.


1992 ◽  
Vol 270 ◽  
Author(s):  
S. D. Wolter ◽  
B. R. Stoner ◽  
G.-H. M. Ma ◽  
J. T. Glass

ABSTRACTA study was performed on polycrystalline copper versus that of Si(100) utilizing a negative substrate bias to enhance diamond nucleation. The biasing pretreatment and subsequent growth of the diamond were performed via microwave plasma chemical vapor deposition and the initial stages of nucleation were characterized by in-vacuo surface analysis. The biasing pretreatment step proved to have a tremendous influence on the nucleation density pertaining to Si(100) substrates, however, the nucleation density on polycrystalline copper was only increased slightly. A highly graphitic surface coverage of roughly 10A was evident on the copper substrates prior to the detection of diamond and was quite stable in thickness in as early as 15 minutes of biasing. The Si(100) substrates, however, were characterized by the formation of a carbide with some form of nondiamond carbon present on the surface throughout the biasing pretreatment.


1995 ◽  
Vol 10 (2) ◽  
pp. 425-430 ◽  
Author(s):  
W. Zhu ◽  
F.R. Sivazlian ◽  
B.R. Stoner ◽  
J.T. Glass

This paper describes a process for uniformly enhancing the nucleation density of diamond films on silicon (Si) substrates via dc-biased hot filament chemical vapor deposition (HFCVD). The Si substrate was negatively biased and the tungsten (W) filaments were positively biased relative to the grounded stainless steel reactor wall. It was found that by directly applying such a negative bias to the Si substrate in a typical HFCVD process, the enhanced diamond nucleation occurred only along the edges of the Si wafer. This resulted in an extremely nonuniform nucleation pattern. Several modifications were introduced to the design of the substrate holder, including a metal wire-mesh inserted between the filaments and the substrate, in the aim of making the impinging ion flux more uniformly distributed across the substrate surface. With such improved growth system designs, uniform enhancement of diamond nucleation across the substrate surface was realized. In addition, the use of certain metallic wire mesh sizes during biasing also enabled patterned or selective diamond deposition.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Weihua Wang ◽  
Bing Dai ◽  
Guoyang Shu ◽  
Yang Wang ◽  
Benjian Liu ◽  
...  

Diamond nucleation on iridium (001) substrates was investigated under different bias conditions. High-density epitaxial nucleation can be obtained in a narrow bias window. This paper reports both the typical nucleation...


2018 ◽  
Vol 281 ◽  
pp. 893-899 ◽  
Author(s):  
Yi Fan Xi ◽  
Jian Huang ◽  
Ke Tang ◽  
Xin Yu Zhou ◽  
Bing Ren ◽  
...  

In this study, we propose a simple and effective approach to enhance (110) orientation in diamond films grown on (100) Si substrates by microwave plasma chemical vapor deposition. It is found that the crystalline structure of diamond films strongly rely on the CH4 concentration in the nucleation stage. Under the same growth condition, when the CH4 concentration is less than 7% (7%) in the nucleation stage, the diamond films exhibit randomly oriented structure; once the value exceeds 7%, the deposited films are strongly (110) oriented. It could be verified by experiments that the formation of (110) orientation in diamond films are related to the high nucleation density and high fraction of diamond-like carbon existing in nucleation samples.


1997 ◽  
Vol 12 (12) ◽  
pp. 3354-3366 ◽  
Author(s):  
Sean P. McGinnis ◽  
Michael A. Kelly ◽  
Stig B. Hagström

The ion-assisted nucleation of diamond was studied in a microwave plasma chemical vapor deposition system to gain insights into the processes controlling this phenomenon. The dependence of the nucleation density on bias voltage and temperature, as well as experiments with an electrically isolated substrate, are consistent with an ion bombardment mechanism for diamond nucleation. However, the growth of these nuclei is dominated by neutral species rather than ions. Measurements of the bias current under various conditions also provide details on the roles of the incident ion flux and substrate electron emission during this process. Furthermore, Monte Carlo simulations of the ion energy distribution at the substrate are compared to experimental measurements. Preferential sputtering, thermal spike, and carbon subplantation nucleation mechanisms are assessed based on the experimental and modeling results.


Sign in / Sign up

Export Citation Format

Share Document