Influence of Crystallographic Orientation, Chemical Inhomogeneities, Material Transport Anisotropy and Elastic Strain Energy on the Migration of Grain Boundaries in Chromium-Doped Alumina During Internal Reduction

1994 ◽  
Vol 357 ◽  
Author(s):  
Monika Backhaus-Ricoult ◽  
A. Peyrot-Chabrol ◽  
R. Chiron ◽  
S. Hagege

AbstractDiffusion-induced grain boundary migration is observed during internal reduction of chromium-doped alumina. It occurs because grain boundary diffusion is fast compared to lattice diffusion of oxygen. The oxygen chemical potential relaxes between grain boundaries and adjacent grains. Migration to either side of the boundary is controlled by multiple factors: chemical composition differences between adjacent grains, elastic strain energy differences on the two sides of the boundary plane or by more rapid oxygen relaxation when the c-axis of a grain is perpendicular to the boundary plane.

1980 ◽  
Vol 35 (6) ◽  
pp. 613-618
Author(s):  
E. Ehrmann-Falkenau ◽  
A. Wagendristel

Simultaneous grain boundary-, surface- and lattice diffusion in hypothetical thin film couples of miscible components was computer simulated. On this basis the diffusion into fixed and moving grain boundaries is discussed with respect to the determination of diffusivities by depth profiling methods. The data evaluated from the synthesised depth profiles according to Whipple-Le Claire as well as to Gilmer and Farrell were compared with the diffusivities used for the computation. Agreement was found for systems with a fixed grain boundary network. Moving grain boundaries, however, may cause errors of an order of magnitude towards lower grain boundary diffusivities


2015 ◽  
Vol 5 ◽  
pp. 247-271
Author(s):  
Dmitri A. Molodov

Recent research on grain boundary migration is reviewed. Novel in-situ measuring techniques based on orientation contrast imaging and the experimental results obtained on specially grown bicrystals are presented. Particularly, the investigated faceting and migration behavior of low angle grain boundaries under the curvature force in aluminum bicrystals was addressed. In contrast to the pure tilt boundaries, which remained straight/flat and immobile during annealing at elevated temperatures, mixed tilt-twist boundaries readily assumed a curved shape and steadily moved under the capillary force. Computational analysis revealed that this behavior is due to the inclinational anisotropy of grain boundary energy, which in turn depends on boundary geometry. The migration of planar grain boundaries induced by a magnetic field was measured in bismuth and zinc bicrystals. Various structurally different boundaries were investigated. The results revealed that grain boundary mobility essentially depends on the misorientation angle and the inclination of the boundary plane. Stress driven boundary migration in aluminium bicrystals was observed to be coupled to a tangential translation of the grains. The activation enthalpy of high angle boundary migration was found to vary non-monotonously with misorientation angle, whereas for low angle boundaries the migration activation enthalpy was virtually the same. The motion of the mixed tilt-twist boundaries under stress was observed to be accompanied by both the translation of adjacent grains parallel to the boundary plane and their rotation around the boundary plane normal.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1517
Author(s):  
Claude Fressengeas ◽  
Vincent Taupin

We review the mechanical theory of dislocation and disclination density fields and its application to grain boundary modeling. The theory accounts for the incompatibility of the elastic strain and curvature tensors due to the presence of dislocations and disclinations. The free energy density is assumed to be quadratic in elastic strain and curvature and has nonlocal character. The balance of loads in the body is described by higher-order equations using the work-conjugates of the strain and curvature tensors, i.e., the stress and couple-stress tensors. Conservation statements for the translational and rotational discontinuities provide a dynamic framework for dislocation and disclination motion in terms of transport relationships. Plasticity of the body is therefore viewed as being mediated by both dislocation and disclination motion. The driving forces for these motions are identified from the mechanical dissipation, which provides guidelines for the admissible constitutive relations. On this basis, the theory is expressed as a set of partial differential equations where the unknowns are the material displacement and the dislocation and disclination density fields. The theory is applied in cases where rotational defects matter in the structure and deformation of the body, such as grain boundaries in polycrystals and grain boundary-mediated plasticity. Characteristic examples are provided for the grain boundary structure in terms of periodic arrays of disclination dipoles and for grain boundary migration under applied shear.


1993 ◽  
Vol 308 ◽  
Author(s):  
L. B. Freund ◽  
G.E. Beltz ◽  
F. Jonsdottir

ABSTRACTThe free energy of a deformable crystal is assumed to consist of elastic strain energy and surface energy, and the chemical potential for surface diffusion at constant temperature is obtained under this assumption. The result is applied in considering the phenomena of instability of a flat surface in a stressed material under fluctuations in surface shape, and the development of surface roughness due to the proximity of misfit dislocations to the free surface of the material.


Author(s):  
D. B. Williams ◽  
A. D. Romig

The segregation of solute or imparity elements to grain boundaries can occur by three well-defined processes. The first is Gibbsian segregation in which an element of minimal matrix solubility confines itself to a monolayer at the grain boundary. Classical examples include Bi in Cu and S or P in Fe. The second process involves the depletion of excess matrix solute by volume diffusion to the boundary. In the boundary, the solute atoms diffuse rapidly to precipitates, causing them to grow by the ‘collector-plate mechanism.’ Such grain boundary diffusion is thought to initiate “Diffusion-Induced Grain Boundary Migration,” (DIGM). This process has been proposed as the origin of eutectoid transformations or discontinuous grain boundary reactions. The third segregation process is non-equilibrium segregation which result in a solute build-up around the boundary because of solute-vacancy interactions.All of these segregation phenomena usually occur on a sub-micron scale and are often affected by the nature of the grain boundary (misorientation, defect structure, boundary plane).


Author(s):  
K. Vasudevan ◽  
H. P. Kao ◽  
C. R. Brooks ◽  
E. E. Stansbury

The Ni4Mo alloy has a short-range ordered fee structure (α) above 868°C, but transforms below this temperature to an ordered bet structure (β) by rearrangement of atoms on the fee lattice. The disordered α, retained by rapid cooling, can be ordered by appropriate aging below 868°C. Initially, very fine β domains in six different but crystallographically related variants form and grow in size on further aging. However, in the temperature range 600-775°C, a coarsening reaction begins at the former α grain boundaries and the alloy also coarsens by this mechanism. The purpose of this paper is to report on TEM observations showing the characteristics of this grain boundary reaction.


Sign in / Sign up

Export Citation Format

Share Document