Surface-Oriented Oxygen Mass Transport During Implantation
AbstractThe effect of implantation conditions on the localization of oxygen implanted with substoichiometric doses has been studied. Oxygen ions were implanted into Si wafers coated with a thin oxide film, which was etched off after the implantation. We used various implantation modes. After the implantation, the specimens were studied using SIMS and X-ray diffractometry. The concentration profiles suggest that at the lower implantation temperature, part of oxygen migrates toward the Si-SiO2 interface. The effect does not refer to the usual enhancement of SIMS signal at the surface because the concentration peak is at a depth of about 25 nm. Calculated deformation profiles indicate a compression at the same depth, the effect being the strongest for the low current density. The result suggests that the superficial layer is rich in vacancial-type defects. The coincidence of the deformation and oxygen concentration maxima leads to the conclusion that oxygen migrates toward the surface in the form of A-centers. A similar phenomenon has been observed for sequential low-temperature implantation of oxygen and nitrogen.