Electron Beam Assisted Chemical Vapor Deposition of Gold in an Environmental Tem

1995 ◽  
Vol 388 ◽  
Author(s):  
John Kouvetakis ◽  
Renu SharmA ◽  
B. L. Ramakrisna ◽  
Jeff Drucker ◽  
Paul Seidler

AbstractWe demonstrate a novel technique for in situ observation of the chemical vapor deposition of high purity gold using ethyl(trimethylphosphine)gold(I). an environmental transmission electron microscope with 3.8 eV resolution was used to observe and compare the growth of the material with or without electron beam irradiation (120 keV) with Si (100) substrate temperatures ranging from 125-200 °C. Typical precursor pressures of 10-4 Torr and E-beam irradiation resulted in rapid growth of virtually continuous gold films. thermal deposition without the beam resulted in low nucleation densities, low deposition rates, and island-like growth. Images and diffraction patterns acquired during the deposition process indicated polycrystalline gold and elemental analysis at the nanometer scale showed that the films had excellent chemical purity. atomic force microscopy was also used to investigate the three dimensional morphology of the materials. the most notable result of the deposition process is the dramatic enhancement of the growth rate due to the beam irradiation.

1988 ◽  
Vol 116 ◽  
Author(s):  
R.A. Rudder ◽  
S.V. Hattangady ◽  
D.J. Vitkavage ◽  
R.J. Markunas

Heteroepitaxial growth of Ge on Si(100) has been accomplished using remote plasma enhanced chemical vapor deposition at 300*#x00B0;C. Reconstructed surfaces with diffraction patterns showing non-uniform intensity variations along the lengths of the integral order streaks are observed during the first 100 Å of deposit. This observation of an atomically rough surface during the initial stages of growth is an indication of three-dimensional growth. As the epitaxial growth proceeds, the diffraction patterns become uniform with extensive streaking on both the integral and fractional order streaks. Subsequent growth, therefore, takes place in a layer-by-layer, two-dimensional mode. X-ray photoelectron spectroscopy of the early nucleation stages, less than 80 Å, show that there is uniform coverage with no evidence of island formation.


2001 ◽  
Vol 16 (8) ◽  
pp. 2408-2414 ◽  
Author(s):  
P. R. Markworth ◽  
X. Liu ◽  
J. Y. Dai ◽  
W. Fan ◽  
T. J. Marks ◽  
...  

Cuprous oxide (Cu2O) films have been grown on single-crystal MgO(110) substrates by a chemical vapor deposition process in the temperature range 690–790 °C. X-ray diffraction measurements show that phase-pure, highly oriented Cu2O films form at these temperatures. The Cu2O films are observed to grow by an island-formation mechanism on this substrate. Films grown at 690 °C uniformly coat the substrate except for micropores between grains. However, at a growth temperature of 790 °C, an isolated, three-dimensional island morphology develops. Using a transmission electron microscopy and atomic force microscope, both dome- and hut-shaped islands are observed and are shown to be coherent and epitaxial. The isolated, coherent islands form under high mobility growth conditions where geometric strain relaxation occurs before misfit dislocation can be introduced. This rare observation for oxides is attributed to the relatively weak bonding of Cu2O, which also has a relatively low melting temperature.


1994 ◽  
Vol 375 ◽  
Author(s):  
G. Ritter ◽  
B. Tillack ◽  
M. Weidner ◽  
F. G. Böbel ◽  
B. Hertel

AbstractChemical Vapor Deposition of Si1-x Gex – films on Si (100) and of polycrystalline Si1-x Gex, layers on SiO2 – coated substrates have been performed at a pressure of 200 Pa in the temperature range of 500°C – 800°C, correspondingly. To observe the growth process and to characterize the growing thin films at deposition conditions an optical reflection interferometer (PYRITIERS) has been used. Comparing the data obtained at growth temperature with ex- situ measurements by spectroscopic ellipsometry the temperature dependence of optical constants of SiGe films have been evaluated. The reflectivity measurements during the deposition process allow to study the quality of the heteroepitaxial film, even in the initial stage of epitaxial growth.


2013 ◽  
Vol 52 (12R) ◽  
pp. 125104 ◽  
Author(s):  
Wooseok Song ◽  
Su Il Lee ◽  
Yooseok Kim ◽  
Dae Sung Jung ◽  
Min Wook Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document