A Kinetic Model of Precipitate Evolution

1995 ◽  
Vol 398 ◽  
Author(s):  
C. Lane Rohrer ◽  
M. D. Asta ◽  
S. M. Foiles ◽  
R. W. Hyland

ABSTRACTChemical reaction rate theory is used to model the kinetics of precipitation reactions in Al alloys, including the effects of continuous cooling and thermally generated point defects. The computational method models the processes of nucleation, growth, and coarsening within a single framework. Calculated time and temperature dependent precipitate number densities and sizes during the homogeneous precipitation of the A13Sc phase in an Al-.11 at% Sc alloy are shown to compare favorably with experimental observations.

2019 ◽  
Author(s):  
Milad Narimani ◽  
Gabriel da Silva

Glyphosate (GP) is a widely used herbicide worldwide, yet accumulation of GP and its main byproduct, aminomethylphosphonic acid (AMPA), in soil and water has raised concerns about its potential effects to human health. Thermal treatment processes are one option for decontaminating material containing GP and AMPA, yet the thermal decomposition chemistry of these compounds remains poorly understood. Here, we have revealed the thermal decomposition mechanism of GP and AMPA by applying computational chemistry and reaction rate theory methods. <br>


2019 ◽  
Author(s):  
Muhammad Yasir Khan ◽  
SUI SO ◽  
Gabriel da Silva

A theoretical study of the decomposition kinetics of PFOS and other perfluorinated sulfonic acids, using density functional theory, wavefunction theory, and statistical reaction rate theory techniques.<br>


1969 ◽  
Vol 91 (1) ◽  
pp. 59-62 ◽  
Author(s):  
M. Grounes

Various phenomenological equations for the dependence of the time-to-rupture, etc., on temperature and stress have been related to a generalized equation based on chemical reaction-rate theory. In the derivation of these equations the assumption, which has been used and criticized in earlier work, that the time-to-rupture is inversely proportional to the creep rate and thus that the ductility is constant, is not needed.


2019 ◽  
Author(s):  
Milad Narimani ◽  
Gabriel da Silva

Glyphosate (GP) is a widely used herbicide worldwide, yet accumulation of GP and its main byproduct, aminomethylphosphonic acid (AMPA), in soil and water has raised concerns about its potential effects to human health. Thermal treatment processes are one option for decontaminating material containing GP and AMPA, yet the thermal decomposition chemistry of these compounds remains poorly understood. Here, we have revealed the thermal decomposition mechanism of GP and AMPA by applying computational chemistry and reaction rate theory methods. <br>


1985 ◽  
Vol 60 ◽  
Author(s):  
J. H. Harding

AbstractWe show how the entropies of formation and migration of point defects may be calculated accurately. The approximations inherent within static lattice calculations are assessed, in particular the Vineyard reaction rate theory.


2019 ◽  
Author(s):  
Muhammad Yasir Khan ◽  
SUI SO ◽  
Gabriel da Silva

A theoretical study of the decomposition kinetics of PFOS and other perfluorinated sulfonic acids, using density functional theory, wavefunction theory, and statistical reaction rate theory techniques.<br>


2019 ◽  
Author(s):  
Milad Narimani ◽  
Gabriel da Silva

Glyphosate (GP) is a widely used herbicide worldwide, yet accumulation of GP and its main byproduct, aminomethylphosphonic acid (AMPA), in soil and water has raised concerns about its potential effects to human health. Thermal treatment processes are one option for decontaminating material containing GP and AMPA, yet the thermal decomposition chemistry of these compounds remains poorly understood. Here, we have revealed the thermal decomposition mechanism of GP and AMPA by applying computational chemistry and reaction rate theory methods. <br>


Sign in / Sign up

Export Citation Format

Share Document