Competition Between Solid Phase Epitaxy and Random Crystallization During cw Laser Annealing of Amorphous Si Films

1981 ◽  
Vol 4 ◽  
Author(s):  
J.A. Roth ◽  
S.A. Kokorowski ◽  
G.L. Olson ◽  
L.D. Hess

ABSTRACTThe kinetics of amorphous-to-polycrystalline conversion and solid phase epitaxy (SPE) in UHV-deposited Si films have been determined over a wide temperature range by the use of optical reflectivity measurements made during rapid heating by a cw Ar laser. Crystallization rates measured in UHV following film deposition are reported and compared to rates measured in air in order to elucidate the effects of contaminants on the processes. The effects of boron doping on nucleation and growth kinetics are also reported. The crystallization rates determined in these studies can be used to predict the volume fraction of polycrystalline material formed during laserinduced SPE growth of thick epitaxial layers.

1983 ◽  
Vol 25 ◽  
Author(s):  
H. Yamamoto ◽  
H. Ishiwara ◽  
S. Furukawa ◽  
M. Tamura ◽  
T. Tokuyama

ABSTRACTLateral solid phase epitaxy (L-SPE) of amorphous Si (a-Si) films vacuum-evaporated on Si substrates with SiO2 patterns has been investigated, in which the film first grows vertically in the regions directly contacted to the Si substrates and then grows laterally onto SiO2 patterns. It has been found from transmission electron microscopy and Nomarski optical microscopy that use of dense a-Si films, which are formed by evaporation on heated substrates and subsequent amorphization by Si+ ion implantation, is essentially important for L-SPE. The maximum L-SPE length of 5–6μm was obtained along the <010> direction after 10hourannealing at 600°C. The kinetics of the L-SPE growth has also been investigated.


1990 ◽  
Vol 57 (13) ◽  
pp. 1340-1342 ◽  
Author(s):  
J. A. Roth ◽  
G. L. Olson ◽  
D. C. Jacobson ◽  
J. M. Poate

MRS Bulletin ◽  
2006 ◽  
Vol 31 (6) ◽  
pp. 461-465 ◽  
Author(s):  
P.C. van der Wilt ◽  
M.G. Kane ◽  
A.B. Limanov ◽  
A.H. Firester ◽  
L. Goodman ◽  
...  

AbstractLow-defect-density polycrystalline Si on flexible substrates can be instrumental in realizing the full potential of macroelectronics. Direct deposition or solid-phase crystallization techniques are often incompatible with polymers and produce materials with high defect densities. Excimer-laser annealing is capable of producing films of reasonable quality directly on polymer and metallic substrates. Sequential lateral solidification (SLS) is an advanced pulsed-laser-crystallization technique capable of producing Si films on polymers with lower defect density than can be obtained via excimer-laser annealing. Circuits built directly on polymers using these SLS films show the highest performance reported to date.


1992 ◽  
Author(s):  
H. Ishiwara ◽  
H. Wakabayashi ◽  
K. Miyazaki ◽  
K. Fukao ◽  
A. Sawaoka

1985 ◽  
Vol 24 (Part 2, No. 7) ◽  
pp. L513-L515 ◽  
Author(s):  
Hiroshi Ishiwara ◽  
Akihiro Tamba ◽  
Hiroshi Yamamoto ◽  
Seijiro Furukawa

1985 ◽  
Author(s):  
Hiroshi Ishiwara ◽  
Akihiro Tamba ◽  
Seijiro Furukawa

1986 ◽  
Vol 48 (12) ◽  
pp. 773-775 ◽  
Author(s):  
Hiroshi Ishiwara ◽  
Akihiro Tamba ◽  
Seijiro Furukawa

1996 ◽  
Vol 439 ◽  
Author(s):  
J. C. McCallum

AbstractThe kinetics of intrinsic and dopant-enhanced solid phase epitaxy (SPE) have been measured in buried amorphous Si (a-Si) layers produced by ion implantation. Buried a-Si layers formed by self-ion implantation provide a suitable environment for studies of the intrinsic growth kinetics of amorphous Si, free from the rate-retarding effects of H. For the first time, dopant-enhanced SPE rates have been measured under these H-free conditions. Buried a-Si layers containing uniform As concentration profiles ranging from 1–16.1 × 1019 As.cm−3 were produced by multiple-energy ion implantation and time resolved reflectivity was used to measure SPE rates over the temperature range 480–660°C. In contrast to earlier studies, the dopant-enhanced SPE rate is found to depend linearly on the As concentration over the entire concentration range measured. The SPE rate can be expressed in the form, v/vi(T) = 1 + N/[No exp(-ΔE/kT)], where vi(T) is the intrinsic SPE rate, N is the dopant concentration and No = 1.2 × 1021 cm−3, ΔE = 0.21 eV.


1999 ◽  
Vol 580 ◽  
Author(s):  
Bing-Zong Li ◽  
Xin-Ping Qu ◽  
Guo-Ping Ru ◽  
Ning Wang ◽  
Paul Chu

AbstractA multilayer structure of Co/a-Si/Ti/Si(100) together with Co/Ti/Si(100) is applied to investigate the process and mechanism of CoSi2 epitaxial growth on a Si(100) substrate. The experimental results show that by adding an amorphous Si layer with a certain thickness, the epitaxial quality of CoSi2 is significantly improved. A multi-element amorphous layer is formed by a solid state amorphization reaction at the initial stage of the multilayer reaction. This layer acts as a diffusion barrier, which controls the atomic interdiffusion of Co and Si and limits the supply of Co atoms. It has a vital effect on the multilayer reaction kinetics, and the epitaxial growth of CoSi2 on Si. The kinetics of the CoSi2 growth process from multilayer reactions is investigated.


1983 ◽  
Author(s):  
Hiroshi Yamamoto ◽  
Hiroshi Ishiwara ◽  
Seijiro Furukawa ◽  
Masao Tamura ◽  
Takashi Tokuyama

Sign in / Sign up

Export Citation Format

Share Document