Kinetics of solid phase epitaxy in thick amorphous Si layers formed by MeV ion implantation

1990 ◽  
Vol 57 (13) ◽  
pp. 1340-1342 ◽  
Author(s):  
J. A. Roth ◽  
G. L. Olson ◽  
D. C. Jacobson ◽  
J. M. Poate
1996 ◽  
Vol 439 ◽  
Author(s):  
J. C. McCallum

AbstractThe kinetics of intrinsic and dopant-enhanced solid phase epitaxy (SPE) have been measured in buried amorphous Si (a-Si) layers produced by ion implantation. Buried a-Si layers formed by self-ion implantation provide a suitable environment for studies of the intrinsic growth kinetics of amorphous Si, free from the rate-retarding effects of H. For the first time, dopant-enhanced SPE rates have been measured under these H-free conditions. Buried a-Si layers containing uniform As concentration profiles ranging from 1–16.1 × 1019 As.cm−3 were produced by multiple-energy ion implantation and time resolved reflectivity was used to measure SPE rates over the temperature range 480–660°C. In contrast to earlier studies, the dopant-enhanced SPE rate is found to depend linearly on the As concentration over the entire concentration range measured. The SPE rate can be expressed in the form, v/vi(T) = 1 + N/[No exp(-ΔE/kT)], where vi(T) is the intrinsic SPE rate, N is the dopant concentration and No = 1.2 × 1021 cm−3, ΔE = 0.21 eV.


1983 ◽  
Vol 25 ◽  
Author(s):  
H. Yamamoto ◽  
H. Ishiwara ◽  
S. Furukawa ◽  
M. Tamura ◽  
T. Tokuyama

ABSTRACTLateral solid phase epitaxy (L-SPE) of amorphous Si (a-Si) films vacuum-evaporated on Si substrates with SiO2 patterns has been investigated, in which the film first grows vertically in the regions directly contacted to the Si substrates and then grows laterally onto SiO2 patterns. It has been found from transmission electron microscopy and Nomarski optical microscopy that use of dense a-Si films, which are formed by evaporation on heated substrates and subsequent amorphization by Si+ ion implantation, is essentially important for L-SPE. The maximum L-SPE length of 5–6μm was obtained along the <010> direction after 10hourannealing at 600°C. The kinetics of the L-SPE growth has also been investigated.


1996 ◽  
Vol 438 ◽  
Author(s):  
J. C. McCallum

AbstractThe kinetics of intrinsic and dopant-enhanced solid phase epitaxy (SPE) have been measured in buried amorphous Si (a-Si) layers produced by ion implantation. Buried a-Si layers formed by self-ion implantation provide a suitable environment for studies of the intrinsic growth kinetics of amorphous Si, free from the rate-retarding effects of H. For the first time, dopant-enhanced SPE rates have been measured under these H-free conditions. Buried a- Si layers containing uniform As concentration profiles ranging from 1–16.1 × 1019 As.cm-3 were produced by multiple-energy ion implantation and time resolved reflectivi[ty was used to measure SPE rates over the temperature range 480–660°C. In contrast to earlier studies, the dopant-enhanced SPE rate is found to depend linearly on the As concentration over the entire concentration range measured. The SPE rate can be expressed in the form, v/vi(T) = 1 + N/[No exp(−Λ E/kT)], where vi(T) is the intrinsic SPE rate, N is the dopant concentration and No = 1.2 × 1021 cm-3, ΔE = 0.21 eV.


1999 ◽  
Vol 580 ◽  
Author(s):  
Bing-Zong Li ◽  
Xin-Ping Qu ◽  
Guo-Ping Ru ◽  
Ning Wang ◽  
Paul Chu

AbstractA multilayer structure of Co/a-Si/Ti/Si(100) together with Co/Ti/Si(100) is applied to investigate the process and mechanism of CoSi2 epitaxial growth on a Si(100) substrate. The experimental results show that by adding an amorphous Si layer with a certain thickness, the epitaxial quality of CoSi2 is significantly improved. A multi-element amorphous layer is formed by a solid state amorphization reaction at the initial stage of the multilayer reaction. This layer acts as a diffusion barrier, which controls the atomic interdiffusion of Co and Si and limits the supply of Co atoms. It has a vital effect on the multilayer reaction kinetics, and the epitaxial growth of CoSi2 on Si. The kinetics of the CoSi2 growth process from multilayer reactions is investigated.


1981 ◽  
Vol 4 ◽  
Author(s):  
J.A. Roth ◽  
S.A. Kokorowski ◽  
G.L. Olson ◽  
L.D. Hess

ABSTRACTThe kinetics of amorphous-to-polycrystalline conversion and solid phase epitaxy (SPE) in UHV-deposited Si films have been determined over a wide temperature range by the use of optical reflectivity measurements made during rapid heating by a cw Ar laser. Crystallization rates measured in UHV following film deposition are reported and compared to rates measured in air in order to elucidate the effects of contaminants on the processes. The effects of boron doping on nucleation and growth kinetics are also reported. The crystallization rates determined in these studies can be used to predict the volume fraction of polycrystalline material formed during laserinduced SPE growth of thick epitaxial layers.


2008 ◽  
Vol 1070 ◽  
Author(s):  
Brett Cameron Johnson ◽  
Paul Gortmaker ◽  
Jeffrey C. McCallum

ABSTRACTThe kinetics of intrinsic and dopant-enhanced solid phase epitaxy (SPE) are studied in thick amorphous germanium (a-Ge) layers formed by ion implantation on <100> Ge substrates. The SPE rates for H-free Ge were measured with a time-resolved reflectivity (TRR) system in the temperature range 300 – 540 °C and found to have an activation energy of (2.15 ± 0.04) eV. Dopant enhanced SPE was measured in a-Ge layers containing a uniform concentration profile of implanted As spanning the concentration regime 1 – 10 × 1019 cm3. The generalized Fermi level shifting model shows excellent fits to the data.


2004 ◽  
Vol 95 (8) ◽  
pp. 4427-4431 ◽  
Author(s):  
B. C. Johnson ◽  
J. C. McCallum

1988 ◽  
Vol 100 ◽  
Author(s):  
D. B. Poker ◽  
D. K. Thomas

ABSTRACTIon implantation of Ti into LINbO3 has been shown to be an effective means of producing optical waveguides, while maintaining better control over the resulting concentration profile of the dopant than can be achieved by in-diffusion. While undoped, amorphous LiNbO3 can be regrown by solid-phase epitaxy at 400°C with a regrowth velocity of 250 Å/min, the higher concentrations of Ti required to form a waveguide (∼10%) slow the regrowth considerably, so that temperatures approaching 800°C are used. Complete removal of residual damage requires annealing temperatures of 1000°C, not significantly lower than those used with in-diffusion. Solid phase epitaxy of Agimplanted LiNbO3, however, occurs at much lower temperatures. The regrowth is completed at 400°C, and annealing of all residual damage occurs at or below 800°C. Furthermore, the regrowth rate is independent of Ag concentration up to the highest dose implanted to date, 1 × 1017 Ag/cm2. The usefulness of Ag implantation for the formation of optical waveguides is limited, however, by the higher mobility of Ag at the annealing temperature, compared to Ti.


Sign in / Sign up

Export Citation Format

Share Document