Temperature Dependence of Minority Carrier Lifetimes in a-Si:H

1996 ◽  
Vol 420 ◽  
Author(s):  
J. C. L. Cornish ◽  
Subaer ◽  
P. Jennings ◽  
G. T. Hefter

AbstractChanges in minority carrier lifetimes in a-Si:H, p-i-n photovoltaic cells due to light soaking have been investigated using the open circuit voltage decay (OCVD) method over the temperature range 223 K to 296 K.Using light from a Xenon flash lamp for excitation produced unexpected results: in the light soaked material, band-to-band transitions were evident at a higher temperature than for the asdeposited samples and became increasingly pronounced as the temperature was reduced. Results obtained using red light at 670 nm from a pulsed diode laser to produce relatively uniform- illumination throughout the thickness of the film, however, produced results very similar to those obtained for as-deposited films.Plots of the reciprocal of the trap activation time versus 1000/T for the results for both xenon lamp and laser excitation can be fitted by straight lines. Two distinct sets of lines with activation energies in the ranges 0.07 to 0.20 eV and 0.38 to 0.51 eV are obtained with the activation energy and the exponential prefactors exhibiting a Meyer-Neldel relationship.

2005 ◽  
Vol 483-485 ◽  
pp. 417-420 ◽  
Author(s):  
Sergey A. Reshanov ◽  
Gerhard Pensl

Minority carrier (hole) lifetime investigations are conducted on identical 6H-SiC p+-n structures by electrical (reverse recovery, open circuit voltage decay) and optical (time-resolved photoluminescence) techniques. The p+-n diodes are fabricated by Al implantation. Depending on the particular analysis technique, the lifetime is determined either electrically in different regions of the p+-n diode or optically in the n-type 6H-SiC epilayer and results, therefore, in different values ranging from ≈10 ns to 2.5 µs.


1986 ◽  
Vol 90 ◽  
Author(s):  
S. R. Jost ◽  
V. F. Meikleham ◽  
T. H. Myers

ABSTRACTInSb has served as an important mid-wave IR (λ=3−5μm) detector material for several decades. In this presentation, we will briefly review General Electric's InSb Charge Injection Device technology. Emphasis will be placed on device performance as a function of material parameters. A new InSb materials technology utilizing liquid phase epitaxy will be described. This epitaxial growth technology improves InSb material parameters and increases minority carrier lifetimes by more than two orders of magnitude to near the Auger limit. Comparisons will be made between available bulk material parameters and that of the epitaxial material.


Sign in / Sign up

Export Citation Format

Share Document