Inversion Domain Boundaries in GaN Grown on Sapphire

1996 ◽  
Vol 449 ◽  
Author(s):  
L. T. Romano ◽  
J.E. Northrup

ABSTRACTInversion domain boundaries (IDBs) in GaN grown on sapphire (0001) were studied by a combination of high resolution transmission electron microscopy, multiple dark field imaging, and convergent beam diffraction. Films grown by molecular beam epitaxy (MBE), metalorganic vapor deposition (MOCVD), and hydride vapor phase epitaxy (HVPE) were investigated and all found to contain IDBs. Inversion domains (IDs) that extended from the surface to the interface were found to be columnar with facets on the {10–10} and {11–20} planes. Other domains ended within the film that formed IDBs on the (0001) and {1–102} planes. The domains were found to grow in clusters and connect at points along the boundary.

1989 ◽  
Vol 167 ◽  
Author(s):  
Alistair D. Westwood ◽  
Michael R. Notis

AbstractThe microstructure and microchemistry of planar and curved defects in Aluminum Nitride (AIN) has been investigated using Conventional Transmission Electron Microscopy (CTEM), Convergent Beam Electron Diffraction (CBED), and Analytical Electron Microscopy (AEM) techniques. Both defect morphologies were identified as Inversion Domain Boundaries (IDB). Microchemical analysis revealed oxygen segregation to the planar faults; when present on the curved defects, oxygen was at a lower concentration than in the planar defect case. Annealing experiments on defect containing AIN support our microchemical analysis of oxygen segregation. A proposed model for the formation of these two types of boundaries is presented.


2009 ◽  
Vol 15 (S2) ◽  
pp. 1082-1083
Author(s):  
D Masiel ◽  
B Reed ◽  
T LaGrange ◽  
ND Browning

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


1999 ◽  
Vol 595 ◽  
Author(s):  
H. Zhou ◽  
F. Phillipp ◽  
M. Gross ◽  
H. Schröder

AbstractMicrostructural investigations on GaN films grown on SiC and sapphire substrates by laser induced molecular beam epitaxy have been performed. Threading dislocations with Burgers vectors of 1/3<1120>, 1/3<1123> and [0001] are typical line defects, predominantly the first type of dislocations. Their densities are typically 1.5×1010 cm−2 and 4×109 cm−2 on SiC and sapphire, respectively. Additionally, planar defects characterized as inversion domain boundaries lying on {1100} planes have been observed in GaN/sapphire samples with an inversion domain density of 4×109 cm−2. The inversion domains are of Ga-polarity with respect to the N-polarity of the adjacent matrix. However, GaN layers grown on SiC show Ga-polarity. Possible reasons for the different morphologies and structures of the films grown on different substrates are discussed. Based on an analysis of displacement fringes of inversion domains, an atomic model of the IDB-II with Ga-N bonds across the boundary was deduced. High resolution transmission electron microscopy (HRTEM) observations and the corresponding simulations confirmed the IDB-II structure determined by the analysis of displacement fringes.


1999 ◽  
Vol 5 (5) ◽  
pp. 352-357 ◽  
Author(s):  
Yanfa Yan ◽  
S. J. Pennycook ◽  
M. Terauchi ◽  
M. Tanaka

Convergent-beam electron diffraction and Z-contrast imaging are used to study oxygen-associated defects, flat inversion domain boundaries, dislocations, and interfaces in sintered AlN ceramics. The structures of these defects are directly derived from atomic-resolution Z-contrast images. The flat inversion domain boundaries contain a single Al-O octahedral layer and have a stacking sequence of . . .bAaB-bAc-CaAc. . , where -cAb- indicates the single octahedral layer. The expansion at the flat inversion domain boundaries is measured to be 0.06 (±0.02) nm. The interfaces between 2H- and polytypoid-AlN are found to be also inversion domain boundaries but their stacking sequence differs from that of the flat inversion domain boundaries.


1981 ◽  
Vol 10 ◽  
Author(s):  
L. J. Chen ◽  
J. W. Mayer ◽  
K. N. Tu

Transmission electron microscopy has been applied to study the formation and structure of epitaxial NiSi2 and CoSi2 thin films on silicon. Bright field and dark field imaging reveal the interface planes of faceted silicides through the strain contrast, analogous to the contrast of the precipitate-matrix interface of coherent or semicoherent precipitates. Superlattice dark field imaging depicts the distribution of twin-related and epitaxial silicides in these systems. { 111 } interfaces were found to be more prominent than {001} interfaces. Twin-related silicides were observed to cover more area on the substrate silicon than epitaxial silicides did.In situ annealing of nickel and cobalt thin films on silicon provides a unique means of investigation of the transformation from polycrystalline to epitaxial silicides. The NiSi2 transformation was found to be very rapid at 820°C, whereas the CoSi2 transformation appeared to be very sluggish. Furnace annealing confirmed that only a small fraction of CoSi2 transforms to epitaxial CoSi2 after annealing at 850°C for 4h.Diffraction contrast analysis has been applied to interfacial dislocations of epitaxial NiSi2/Si and CoSi2/Si systems. The dislocations were found to be of edge type with ⅙<112> and ½<110> Burgers' vectors. The average spacings are close to their respective theoretically predicted values.


1987 ◽  
Vol 103 ◽  
Author(s):  
W. M. Stobbs

ABSTRACTT.E.M. methods are described for the quantitative characterisation of the compositional and structural changes at interfaces and in homo- and hetero-phase multilayer structures. Many of the newer approaches described including the Fresnel and Centre Stop Dark Field Imaging Methods were developed specifically for such characterisations. The range of applications of each of the techniques is assessed as is the importance of delineating the limiting effects of inelastic and inelastic/elastic multiple scattering.


2011 ◽  
Vol 17 (5) ◽  
pp. 759-765 ◽  
Author(s):  
Tanmay Das ◽  
Somnath Bhattacharyya

AbstractStructure and chemistry across the rare earth oxide-Ge interfaces of a Gd2O3-Ge-Gd2O3 heterostructure grown on p-Si (111) substrate using encapsulated solid phase epitaxy method have been studied at nanoscale using various transmission electron microscopy methods. The structure across both the interfaces was investigated using reconstructed phase and amplitude at exit plane. Chemistry across the interfaces was explored using elemental mapping, high-angle annular dark-field imaging, electron energy loss spectroscopy, and energy dispersive X-ray spectrometry. Results demonstrate the structural and chemical abruptness of both the interfaces, which is most essential to maintain the desired quantum barrier structure.


2000 ◽  
Vol 618 ◽  
Author(s):  
V. Narayanan ◽  
S. Mahajan ◽  
K. J. Bachmann ◽  
V. Woods ◽  
N. Dietz

ABSTRACTGaP islands grown on selected surfaces of Si and their coalescence behavior have been investigated by transmission electron microscopy. These layers were grown by chemical beam epitaxy. A number of significant observations emerge from this study. First, planar defect formation has been shown to be related to stacking errors on the smaller P-terminated {111} facets of GaP islands. Amongst the four orientations, (111) epilayers have a higher density of stacking faults and first order twins because of more P-terminated {111} facets per island. Second, multiple twinning on exposed {111} facets can produce tilt boundaries and irregular growths when islands coalesce. Third, inversion domain boundaries lying on {110} planes have been shown to form during GaP island coalescence across monatomic steps on (001) Si. Image simulations have been performed to show that these boundaries can be seen in high resolution lattice images and the observed contrast is attributed to the presence of wrong Ga-Ga and P-P bonds at the inversion boundary.


Sign in / Sign up

Export Citation Format

Share Document