Electron-Phonon Scattering in GaN/AlN and GaAs/AlAs Quantum Wells

1997 ◽  
Vol 482 ◽  
Author(s):  
T. F. Forbang ◽  
C. R. McIntyre

AbstractWe have studied the effects on the phonon spectrum and on the electron-longitudinal optical phonon scattering in GaN/AlN and GaAs/AlAs quantum wells. Phonon modes and potentials have been calculated for both systems. Results for emission due to electroninterface phonons interactions are presented. We will discuss the implications for relaxation times and electron mobility due to modified LO-phonon scattering in both systems.

1992 ◽  
Author(s):  
Michael A. Stroscio ◽  
Ki Wook Kim ◽  
Amit R. Bhatt ◽  
Gerald J. Iafrate ◽  
Mitra B. Dutta ◽  
...  

Author(s):  
Mohamed Boumaza

We report on hole polar optical phonon scattering processes in thin GaAs/AlxGa1-xAs quantum wells grown in various crystallographic directions, such as [001], [110]. Using the dielectric continuum model we focus on how the different scattering processes of holes with interface phonon modes depend on the initial hole energy. In our work, we use the Luttinger-Kohn (LK) 6×6 k.p Hamiltonian with the envelope function approximation, from which we compute numerically the electronic structure of holes for a thin quantum well sustaining only one bound state for each type of hole. Due to mixing between the heavy, light, and split off bands, hole subbands exhibit strong nonparabolicity and important warping that have their word to say on physical properties. Detailed and extensive calculations that the rates for intra-subband scattering processes differ significantly from those of bulk GaAs because of quantization and reduced dimensionality. Moreover, the study of scattering as a function of hole energy shows that the trend of the scattering rates is governed mostly by i) overlap integrals and ii) the density of the final states to which the hole scatters. The influence of warping, in the hole energy dispersion, on the phonon scattering rates is also explored and found to be important when the initial hole energy is high. Our calculations show evidence of strong anisotropy in the scattering rates especially for processes involving the heavy hole subband, which anisotropy is in fact quite important and far from being negligible. However, strain effect can reduce scattering rates.


2003 ◽  
Vol 82 (7) ◽  
pp. 1015-1017 ◽  
Author(s):  
Benjamin S. Williams ◽  
Hans Callebaut ◽  
Sushil Kumar ◽  
Qing Hu ◽  
John L. Reno

1997 ◽  
Vol 71 (13) ◽  
pp. 1852-1853 ◽  
Author(s):  
K. T. Tsen ◽  
D. K. Ferry ◽  
A. Botchkarev ◽  
B. Sverdlov ◽  
A. Salvador ◽  
...  

1997 ◽  
Vol 11 (08) ◽  
pp. 991-1008 ◽  
Author(s):  
R. Chen ◽  
D. L. Lin

The polaronic effect on the hydrogenic 1s–2p+ transition energy of a donor impurity located at the quantum well center in a double heterostructure is studied theoretically in detail. The electron–optical–phonon interaction Hamiltonian is derived on the basis of eigenmodes of lattice vibrations supported by the double heterostructure. Both the confined and interface phonon modes are included in the electron–phonon coupling. The transition energy is calculated as a function of the applied magnetic field for GaAs/Al 1-x Ga x As samples of well -widths d=125 Å, 210 Å and 450 Å by the second-order perturbation. Wide transition gaps are predicted around the two-level and three-level resonances for all three cases. It is found that the transition gap narrows with the increasing well-width but remains larger than the LO and TO phonon frequency difference for d=450 Å as is observed. We also perform the same calculation by assuming that the confined electron interacts with three-dimensional and two-dimensional phonon modes. The transition energy spectra from these calculations appear to be similar to those for a bulk sample, the spectrum splits at the resonance with the longitudinal optical phonon frequency only. From comparisons of our results with these calculations as well as with experiments, it is conclusively established that the wide gap of transition energy is solely due to the interface modes.


Sign in / Sign up

Export Citation Format

Share Document