Waste Management in a National Research Laboratory

1997 ◽  
Vol 506 ◽  
Author(s):  
H.-F. Beer ◽  
M. Jermann

ABSTRACTBecause of its experience in handling radioactive materials including waste generated on-site PSI was charged with managing the treatment and interim storage of the radioactive waste from medicine, industry and research in Switzerland. Combustible operational waste from the Swiss nuclear power plants is conditioned on a contract base and stored temporarily at the sites of the power plants. Because of the decommissioning of old facilities provoked by the change in the research priorities at PSI, temporarily an additional amount of waste is released on-site to be treated. PSI possesses the facilities and the organisational structure to fulfil the tasks it is charged with. In the near future the major part of the conditioning procedures, except the conditioning of some of the waste containing α-emitters, will be performed by ZWILAG. PSI will stay responsible for the management, organisation and interim storage of all radioactive waste, except for nuclear power plant waste, as before.

Author(s):  
Leopold Weil ◽  
Bernd Rehs

In Germany, altogether 19 nuclear power plants (NPPs) and prototype reactors have been permanently shut down. For 15 NPPs the dismantling is in progress with “green-field conditions” as planning target. Two units were completely dismantled and two are in safe enclosure. The main legal provision for all aspects of the peaceful use of nuclear energy in Germany is the Atomic Energy Act (AtG), which also contains the basic legal conditions for the decommissioning of nuclear facilities. It stipulates that decommissioning is subject to a licence by the regulatory body of the respective Federal State (Land). An emerging decommissioning practice in Germany is the removal of complete undismantled large components and their transport to interim storage facilities. During the period of storage, the radionuclide inventory of the components will decrease due to radioactive decay and the subsequent segmentation of the components can be done with less radiation protection effort. The commissioning of the Konrad repository in the near future might have consequences on planning of decommissioning, regarding the selection of a decommissioning strategy and the waste management.


Author(s):  
Gaetano Ruggeri ◽  
Luigi Brusa

Abstract Scope of the paper is to summarise the experience about management of materials arising from decommissioning of Italian NPPs, and to illustrate criteria, procedures and systems, which Sogin is defining to manage the problem of the clearance of sites and materials, considering the international experience and boundary conditions existing in the Country. Since 1962 Enel (the largest Italian utility for electric power) has operated the four Italian nuclear power plants: Garigliano (160 MWe BWR), Latina (210 MWe GCR), Trino (270 MWe PWR) and Caorso (882 MWe BWR). These NPPs were shutdown in the 80’s: Garigliano NPP was shutdown in 1982 following a decision made by Enel, based on technical and economical reasons, Latina, Trino and Caorso NPPs following decisions made by the Italian Government after the Chernobyl accident. The “deferred decommissioning (SAFSTOR)” was the decommissioning strategy selected by Enel and approved by the competent Authorities, due to the lack of a repository for the disposal of radioactive materials and of release limits for clearance of materials. Activities have been started aimed at reaching the “Safe Enclosure” condition, which would have lasted for some decades, before final dismantling of plants. In 1999 the liberalisation of the Italian electricity market led Enel to separate its nuclear activities, forming a new Company, named Sogin, to which decommissioning Italian NPPs was committed. At the same time, considering pressures, both at national and local level, to adopt the “prompt decommissioning (DECON)” strategy, in December 1999 the Italian Minister of Industry, with the intent to accelerate the dismantling of Italian NPPs, presented the plans to create a national repository for nuclear waste, and asked Sogin to revise the decommissioning plans, according to the new global strategy, taking into account all the relevant technical, organisational, financial and legislative aspects of the problem. As the DECON strategy enhances the importance of “clean-up” both of sites and materials, the related aspects are held in due consideration in developing the decommissioning plans, which deal with the following: • characterisation of plant systems, components and structures; • decontamination and dismantling techniques; • monitoring of dismantled materials for clearance; • treatment of dismantled, radioactive materials (which cannot be cleared), prior to disposal; • treatment and conditioning of radioactive waste, prior to disposal; • final clearance of sites. Authorisation requirement related to the release, recycle and reuse of materials produced during plant decommissioning, together with the acceptance criteria for disposal of radioactive materials, are of key importance, considering that the change in decommissioning strategy increases the quantity of radioactive waste to be disposed of, the costs for waste treatment, transportation and disposal, and the capacity of the national repository. In this connection, Sogin is discussing with competent Authorities and Bodies in order to define clearance criteria and disposal acceptance criteria, which neither impair nor complicate the future dismantling operations. In (1) details are given about Italian decommissioning Regulation, decommissioning strategy and Organisation, in order to show the boundary conditions, which exist in Italy for planning and development of NPPs Decommissioning Projects. In the following paragraphs the decommissioning strategy is summarised first together with some critical items of decommissioning; then the Italian regulation about the management of radioactive waste is reported. The management of waste and materials, which will arise from the decommissioning of Italian nuclear power plants, is driven by the requirements imposed by the competent Authorities basing on this regulation.


Author(s):  
Riccardo Costantini

The author develops an endogenous growth framework in which energy production is based on a learning by doing technology exploiting renewable reproducible capital and nuclear power plants. Consumption activities generates radioactive waste according to an exogenous factor reflecting the economy energy mix, while an abatement technology, reducing the impact of solid waste accumulation on welfare, is explicitly taken into account. Differently from traditional growth and environmental literature, the author includes an explicit preference for the technology mix by postulating a non separable utility in consumption, radioactive waste and stock of renewable capital. Within this framework the author derives conditions on preferences under which sustained growth is attainable without imposing, ex ante, neither compensation nor a distaste effect characterizing utility. Finally, introducing simplifying assumptions on the preference relation, an investigation of the dynamic property of the equilibrium is provided. The results obtained suggest a high complementarity of renewable capital and nuclear technology exploitation in determining potential long run growth.


2000 ◽  
Vol 663 ◽  
Author(s):  
P.P. Poluektov ◽  
L.P. Soukhanov ◽  
M.I. Zhicharev

ABSTRACTA method is suggested to assess the tolerable salt content of the evaporator bottoms from the data on solubility in salt systems taken as simplified models of liquid radioactive waste (LRW) arising from nuclear power plants (NPP) with boiling reactors. It has been demonstrated that the degree of evaporation may be substantially increased by implementing the process in nitric acid. Equations have been derived that allow the calculation of the minimum needed acidity of the solution to allow maximum evaporation.


2002 ◽  
Vol 757 ◽  
Author(s):  
Feodor A. Lifanov ◽  
Michael I. Ojovan ◽  
Sergey V. Stefanovsky ◽  
Rudolf Burcl

ABSTRACTOperational radioactive waste is generated during routine operation of nuclear power plants (NPP). This waste must be solidified in order to ensure safe conditions of storage and disposal. Vitrification of NPP operational waste is a relative new solidification option being developed for last years. The vitrification technology comprises a few stages, starting with evaporation of excess water from liquid radioactive waste, followed by batch preparation, glass melting, and ending with vitrified waste blocks and some relative small amounts of secondary waste. Application of induction high frequency cold crucible type melters facilitates the melting process and significantly reduces the generation of secondary waste. Two types of glasses were designed in order to vitrify operational waste depending on the reactor type at the NPP. For the NPP with RBMK-type reactors the glass 16.2Na2O 0.5K2O 15.5CaO 2.5 Al2O3 1.7Fe2O3 7.5B2O3 48.2SiO2 1.1 Na2SO4 1.2NaCl (5.7 others) was produced. For NPP with WWER reactors the glass 24.0Na2O 1.9K2O 6.2CaO 4.3Al2O3 1.8Fe2O3 9.0B2O3 46.8SiO2 0.8Na2SO4 0.9NaCl (4.3 others) was produced. The melting temperatures of both glass formulations were 1200–1250 C, specific power consumption was 5.2 ± 0.8 kW h/kg, 137Cs loss was within the range 3 - 4 %. The specific radioactivity of glass reached 7.0 MBq/kg. Glass blocks obtained were studied both in laboratory and field conditions. Long-term studies revealed that vitrified NPP operational waste has the minimal impact onto environment. Since the glass has excellent resistance to corrosion it gives the basic possibility of maximal simplification of engineered barrier systems in a disposal facility. The simplest disposal option for vitrified NPP waste is to locate the packages directly into earthen trenches provided the host rock has the necessary sorption and confinement properties.


Author(s):  
Takeshi Ishikura ◽  
Daiichiro Oguri

Abstract Minimizing the volume of radioactive waste generated during dismantling of nuclear power plants is a matter of great importance. In Japan waste forms buried in shallow burial disposal facility as low level radioactive waste (LLW) must be solidified by cement with adequate strength and must extend no harmful openings. The authors have developed an improved method to minimize radioactive waste volume by utilizing radioactive concrete and metal for mortar to fill openings in waste forms. Performance of a method to pre-place large sized metal or concrete waste and to fill mortar using small sized metal or concrete was tested. It was seen that the improved method substantially increases the filling ratio, thereby decreasing the numbers of waste containers.


Sign in / Sign up

Export Citation Format

Share Document