scholarly journals Overheating In Silicon During Pulsed-Laser Irradiation?

1985 ◽  
Vol 51 ◽  
Author(s):  
B. C. Larson ◽  
J. Z. Tischler ◽  
D. M. Mills

ABSTRACTNanosecond resolution time-resolved x-ray diffraction measurements of thermal strain have been used to measure the interface temperatures in silicon during pulsed-laser irradiation. The pulsed-time-structure of the Cornell High Energy Synchrotron Source (CHESS) was used to measure the temperature of the liquid-solid interface of <111> silicon during melting with an interface velocity of 11 m/s, at a time of near zero velocity, and at a regrowth velocity of 6 m/s. The results of these measurements indicate 110 K difference between the temperature of the interface during melting and regrowth, and the measurement at zero velocity shows that most of the difference is associated with undercooling during the regrowth phase.

1984 ◽  
Vol 35 ◽  
Author(s):  
J.Z. Tischler ◽  
B.C. Larson ◽  
D.M. Mills

ABSTRACTSynchrotron x-ray pulses from the Cornell High Energy Synchrotron Source (CHESS) have been used to carry out nanosecond resolution measurements of the temperature distrubutions in Ge during UV pulsed-laser irradiation. KrF (249 nm) laser pulses of 25 ns FWHM with an energy density of 0.6 J/cm2 were used. The temperatures were determined from x-ray Bragg profile measurements of thermal expansion induced strain on <111> oriented Ge. The data indicate the presence of a liquid-solid interface near the melting point, and large (1500-4500°C/pm) temperature gradients in the solid; these Ge results are analagous to previous ones for Si. The measured temperature distributions are compared with those obtained from heat flow calculations, and the overheating and undercooling of the interface relative to the equilibrium melting point are discussed.


1986 ◽  
Vol 1 (1) ◽  
pp. 144-154 ◽  
Author(s):  
B. C. Larson ◽  
J. Z. Tischler ◽  
D. M. Mills

We have used the pulsed time structure of the Cornell High-Energy Synchrotron Source (CHESS) to carry out a nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation. Time-resolved temperature distributions and interfacial overheating and undercooling were measured on 〈111〉 and 〈100〉 silicon during 25 ns UV laser pulses through the analysis of thermal expansion induced strain. The temperature gradients were found to be > 107 K/cm at the liquid-solid interface and the temperature distributions have been shown to be in agreement with numerical heat flow calculations for these laser conditions. The combined overheating and undercooling (during ∼ 10 m/s melting and ∼ 6 m/s regrowth) was measured to be 110 ± 30 K on 〈111〉 oriented silicon and 50 ± 25 K on 〈100〉 silicon. These values have been interpreted in terms of velocity coefficients of overheating and undercooling.


1984 ◽  
Vol 35 ◽  
Author(s):  
B. C. Larson ◽  
J. Z. Tischler ◽  
D. M. Mills

ABSTRACTWe have used time-resolved x-ray diffraction measurements of thermal expansion induced strain to measure overheating and undercooling in <100> and <111> oriented silicon during pulsed laser melting and regrowth. 249 nm (KrF) excimer laser pulses of 1.2 J/cm2 energy density and 25 ns FWHM were synchronized with x-ray pulses from the Cornell High Energy Synchrotron Source (CHESS) to carry out Bragg profile measurements with ±2 ns time resolution. Combined overheating and undercooling values of 120 ± 30 K and 45 ± 20 K were found for the <111> and <100> orientations, respectively, and these values have been used to obtain information on the limiting regrowth velocities for silicon.


1985 ◽  
Vol 51 ◽  
Author(s):  
Kouichi Murakami ◽  
Hans C. Gerritsen ◽  
Hedser Van Brug ◽  
Fred Bijkerk ◽  
Frans W. Saris ◽  
...  

ABSTRACTWe report time-resolved X-ray absorption and extended X-ray absorption fine structure (EXAFS) measurements on amorphous silicon under nanosecond pulsed-laser irradiation. Each measurement was performed with one laser shot in the X-ray energy range from 90 to 300 eV. An X-ray absorption spectrum for induced liquid Si (liq*Si) was first observed above an energy density of 0.17 J/cm2. It differs significantly from the spectrum for amorphous Si and characteristically shows the disappearance of the Si-L(II,III) edge structure at around 100 eV. This phenomenon is interpreted in terms of a significant reduction in the 3s-like character of the unfilled part of the conduction band of liq*Si compared to that of amorphous Si. This is the first direct evidence that liq*Si has a metallic-like electronic structure. Timeresolved EXAFS results are also discussed briefly.


1993 ◽  
Vol 64 (9) ◽  
pp. 2615-2623 ◽  
Author(s):  
D. P. Brunco ◽  
J. A. Kittl ◽  
C. E. Otis ◽  
P. M. Goodwin ◽  
Michael O. Thompson ◽  
...  

1988 ◽  
Vol 100 ◽  
Author(s):  
B. C. Larson ◽  
J. Z. Tischler ◽  
D. M. Mills

ABSTRACTNanosecond-resolution x-ray diffraction has been used to measure the interface and lattice temperatures of silicon during rapid, pulsed-laser induced melting and regrowth in silicon. Measurements have been carried out on <100> and <111> oriented silicon using the (100) and (111) reflections to measure the thermal strain during 30 ns, 1.1 J/cm2 KrF laser pulses. The results indicate overheating to be low (< 2 K/m/s) for both orientations with undercooling rates of 5.6 K/m/s and 11.4 K/m/s for the <100> and <111> orientations, respectively. Observations of higher than expected temperature gradients below the liquidsolid interface have been discussed in terms of restricted heat flow under high gradients.


1989 ◽  
Vol 157 ◽  
Author(s):  
M.G. Grimaldi ◽  
P. Baeri ◽  
G. Baratta

ABSTRACTThe difference in the melting temperature of ion implanted and relaxed amorphous silicon has been measured. Pulsed laser irradiation (λ=347 nm, τ=30 ns) has been used to induce surface melting in the amorphous layer and time resolved reflectivity to detect the melting onset. The threshold energy density for surface melting in the relaxed amorphous was found 15.9±.3% higher than that in the unrelaxed one. The estimate of the variation of the thermal parameters in amorphous silicon upon relaxation allowed a determination of ΔTM=45±10 K between relaxed and unrelaxed amorphous silicon.


Sign in / Sign up

Export Citation Format

Share Document