Overheating and Undercooling in Silicon During Pulsed-Laser Irradiation

1984 ◽  
Vol 35 ◽  
Author(s):  
B. C. Larson ◽  
J. Z. Tischler ◽  
D. M. Mills

ABSTRACTWe have used time-resolved x-ray diffraction measurements of thermal expansion induced strain to measure overheating and undercooling in <100> and <111> oriented silicon during pulsed laser melting and regrowth. 249 nm (KrF) excimer laser pulses of 1.2 J/cm2 energy density and 25 ns FWHM were synchronized with x-ray pulses from the Cornell High Energy Synchrotron Source (CHESS) to carry out Bragg profile measurements with ±2 ns time resolution. Combined overheating and undercooling values of 120 ± 30 K and 45 ± 20 K were found for the <111> and <100> orientations, respectively, and these values have been used to obtain information on the limiting regrowth velocities for silicon.

1984 ◽  
Vol 35 ◽  
Author(s):  
J.Z. Tischler ◽  
B.C. Larson ◽  
D.M. Mills

ABSTRACTSynchrotron x-ray pulses from the Cornell High Energy Synchrotron Source (CHESS) have been used to carry out nanosecond resolution measurements of the temperature distrubutions in Ge during UV pulsed-laser irradiation. KrF (249 nm) laser pulses of 25 ns FWHM with an energy density of 0.6 J/cm2 were used. The temperatures were determined from x-ray Bragg profile measurements of thermal expansion induced strain on <111> oriented Ge. The data indicate the presence of a liquid-solid interface near the melting point, and large (1500-4500°C/pm) temperature gradients in the solid; these Ge results are analagous to previous ones for Si. The measured temperature distributions are compared with those obtained from heat flow calculations, and the overheating and undercooling of the interface relative to the equilibrium melting point are discussed.


1986 ◽  
Vol 1 (1) ◽  
pp. 144-154 ◽  
Author(s):  
B. C. Larson ◽  
J. Z. Tischler ◽  
D. M. Mills

We have used the pulsed time structure of the Cornell High-Energy Synchrotron Source (CHESS) to carry out a nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation. Time-resolved temperature distributions and interfacial overheating and undercooling were measured on 〈111〉 and 〈100〉 silicon during 25 ns UV laser pulses through the analysis of thermal expansion induced strain. The temperature gradients were found to be > 107 K/cm at the liquid-solid interface and the temperature distributions have been shown to be in agreement with numerical heat flow calculations for these laser conditions. The combined overheating and undercooling (during ∼ 10 m/s melting and ∼ 6 m/s regrowth) was measured to be 110 ± 30 K on 〈111〉 oriented silicon and 50 ± 25 K on 〈100〉 silicon. These values have been interpreted in terms of velocity coefficients of overheating and undercooling.


1985 ◽  
Vol 51 ◽  
Author(s):  
B. C. Larson ◽  
J. Z. Tischler ◽  
D. M. Mills

ABSTRACTNanosecond resolution time-resolved x-ray diffraction measurements of thermal strain have been used to measure the interface temperatures in silicon during pulsed-laser irradiation. The pulsed-time-structure of the Cornell High Energy Synchrotron Source (CHESS) was used to measure the temperature of the liquid-solid interface of <111> silicon during melting with an interface velocity of 11 m/s, at a time of near zero velocity, and at a regrowth velocity of 6 m/s. The results of these measurements indicate 110 K difference between the temperature of the interface during melting and regrowth, and the measurement at zero velocity shows that most of the difference is associated with undercooling during the regrowth phase.


1988 ◽  
Vol 100 ◽  
Author(s):  
B. C. Larson ◽  
J. Z. Tischler ◽  
D. M. Mills

ABSTRACTNanosecond-resolution x-ray diffraction has been used to measure the interface and lattice temperatures of silicon during rapid, pulsed-laser induced melting and regrowth in silicon. Measurements have been carried out on <100> and <111> oriented silicon using the (100) and (111) reflections to measure the thermal strain during 30 ns, 1.1 J/cm2 KrF laser pulses. The results indicate overheating to be low (< 2 K/m/s) for both orientations with undercooling rates of 5.6 K/m/s and 11.4 K/m/s for the <100> and <111> orientations, respectively. Observations of higher than expected temperature gradients below the liquidsolid interface have been discussed in terms of restricted heat flow under high gradients.


1983 ◽  
Vol 13 ◽  
Author(s):  
B. C. Larson ◽  
C. W. White ◽  
T. S. Noggle ◽  
J. F. Barhorst ◽  
D. M. Mills

ABSTRACTNear surface temperatures and temperature gradients have been studied in silicon during pulsed laser annealing. The investigation was carried out using nanosecond resolution x-ray diffraction measurements made at the Cornell High Energy Synchrotron Source. Thermal-induced-strain analyses of these real-time, extended Bragg scattering measurements have shown that the lattice temperature reached the melting point during 15 ns, 1.1–1.5 J/cm2 ruby laser pulses and that the temperature of the liquid-solid interface remained at that temperature throughout the high reflectivity phase, after which time the surface temperature subsided rapidly. The temperature gradients below the liquid-solid interface were found to be in the range of 107°C/cm.


2009 ◽  
Vol 1210 ◽  
Author(s):  
Javier Olea Ariza ◽  
David Pastor ◽  
María Toledano-Luque ◽  
Ignacio Mártil ◽  
Germán González-Díaz ◽  
...  

AbstractWe have studied the Pulsed-Laser Melting (PLM) effects on Ti implanted GaP to form an Intermediate Band (IB). Structural analysis has been carried out by means of Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS), Raman spectroscopy and Glancing Incidence X-Ray Diffraction (GIXRD). After the PLM annealing, Ti concentration is over the Mott limit. Nevertheless, the Raman spectra show a forbidden TO vibrational mode of GaP. This result suggests the formation of crystalline domains with a different orientation in the annealed region regarding to the GaP unannealed substrate. This conclusion has been corroborated by GIXRD measurements. As a result of the polycrystalline lattice, a drop of the mobility is produced.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Matthias Rössle ◽  
Wolfram Leitenberger ◽  
Matthias Reinhardt ◽  
Azize Koç ◽  
Jan Pudell ◽  
...  

The time-resolved hard X-ray diffraction endstation KMC-3 XPP for optical pump/X-ray probe experiments at the electron storage ring BESSY II is dedicated to investigating the structural response of thin film samples and heterostructures after their excitation with ultrashort laser pulses and/or electric field pulses. It enables experiments with access to symmetric and asymmetric Bragg reflections via a four-circle diffractometer and it is possible to keep the sample in high vacuum and vary the sample temperature between ∼15 K and 350 K. The femtosecond laser system permanently installed at the beamline allows for optical excitation of the sample at 1028 nm. A non-linear optical setup enables the sample excitation also at 514 nm and 343 nm. A time-resolution of 17 ps is achieved with the `low-α' operation mode of the storage ring and an electronic variation of the delay between optical pump and hard X-ray probe pulse conveniently accesses picosecond to microsecond timescales. Direct time-resolved detection of the diffracted hard X-ray synchrotron pulses use a gated area pixel detector or a fast point detector in single photon counting mode. The range of experiments that are reliably conducted at the endstation and that detect structural dynamics of samples excited by laser pulses or electric fields are presented.


1981 ◽  
Vol 4 ◽  
Author(s):  
B. C. Larson ◽  
C. W. White ◽  
T. S. Noggle ◽  
J. F. Barhorst ◽  
D. Mills

ABSTRACTSynchrotron x-ray pulses have been used to make nanosecond resolution time-resolved x-ray diffraction measurements on silicon during pulsed laser annealing. Thermal expansion analysis of near-surface strains during annealing has provided depth dependent temperature profiles indicating >1100°C temperatures and diffraction from boron implanted silicon has shown evidence for near-surface melting. These results are in qualitative agreement with the thermal melting model of laser annealing.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1415 ◽  
Author(s):  
Guillaume Geandier ◽  
Lilian Vautrot ◽  
Benoît Denand ◽  
Sabine Denis

In situ high-energy X-ray diffraction using a synchrotron source performed on a steel metal matrix composite reinforced by TiC allows the evolutions of internal stresses during cooling to be followed thanks to the development of a new original experimental device (a transportable radiation furnace with controlled rotation of the specimen). Using the device on a high-energy beamline during in situ thermal treatment, we were able to extract the evolution of the stress tensor components in all phases: austenite, TiC, and even during the martensitic phase transformation of the matrix.


2014 ◽  
Vol 70 (a1) ◽  
pp. C775-C775 ◽  
Author(s):  
Radoslaw Kaminski ◽  
Jason Benedict ◽  
Elzbieta Trzop ◽  
Katarzyna Jarzembska ◽  
Bertrand Fournier ◽  
...  

High-intensity X-ray sources, such as synchrotrons or X-ray free electron lasers, providing up to 100 ps time-resolution allow for studying very short-lived excited electronic states in molecular crystals. Some recent examples constitute investigations of Rh...Rh bond shortening,[1] or metal-to-ligand charge transfer processes in CuI complexes.[2] Nevertheless, in cases in which the lifetime of excited state species exceeds 10 μs it is now possible, due to the dramatic increase in the brightness of X-ray sources and the sensitivity of detectors, to use laboratory equipment to explore structural changes upon excitation. Consequently, in this contribution we present detailed technical description of the 'in-house' X-ray diffraction setup allowing for the laser-pump X-ray-probe experiments within the time-resolution at the order of 10 μs or larger. The experimental setup consists of a modified Bruker Mo-rotating-anode diffractometer, coupled with the high-frequency Nd:YAG laser (λ = 355 nm). The required synchronization of the laser pulses and the X-ray beam is realized via the optical chopper mounted across the beam-path. Chopper and laser capabilities enable high-repetition-rate experiments reaching up to 100 kHz. In addition, the laser shutter is being directly controlled though the original diffractometer software, allowing for collection of the data in a similar manner as done at the synchrotron (alternating light-ON & light-OFF frames). The laser beam itself is split into two allowing for improved uniform light delivery onto the crystal specimen. The designed setup was tested on the chosen set of crystals exhibiting rather long-lived excited state, such as, the Cu2Br2L2 (L = C5H4N-NMe2) complex, for which the determined lifetime is about 100 μs at 90 K. The results shall be presented. Research is funded by the National Science Foundation (CHE1213223). KNJ is supported by the Polish Ministry of Science and Higher Education through the "Mobility Plus" program.


Sign in / Sign up

Export Citation Format

Share Document