Interface Temperatures and Temperature Gradients in Silicon During Pulsed Laser Irradiation
ABSTRACTNanosecond-resolution x-ray diffraction has been used to measure the interface and lattice temperatures of silicon during rapid, pulsed-laser induced melting and regrowth in silicon. Measurements have been carried out on <100> and <111> oriented silicon using the (100) and (111) reflections to measure the thermal strain during 30 ns, 1.1 J/cm2 KrF laser pulses. The results indicate overheating to be low (< 2 K/m/s) for both orientations with undercooling rates of 5.6 K/m/s and 11.4 K/m/s for the <100> and <111> orientations, respectively. Observations of higher than expected temperature gradients below the liquidsolid interface have been discussed in terms of restricted heat flow under high gradients.