Kinetics and Mechanisms of Intermetallic Growth by Bulk Interdiffusion

1998 ◽  
Vol 527 ◽  
Author(s):  
L.N. Paritskaya ◽  
Yu.S. Kaganovskii ◽  
V.V. Bogdanov

ABSTRACTKinetic properties of γ-phase (Cu5Zn8) growth in the binary system Cu-Zn were studied at 160-270°C. It has been found that γ-phase grows in diffusional-kinetic regime. Both kinetic coefficients of interfacial reaction rate β and diffusion coefficients D have been determined taking into account Kirkendall effect. Arrhenius equations for the kinetic and diffusion coefficients have been obtained, with the high values of “dynamic” diffusion coefficients and low activation energies for both diffusion (QD) and interfacial reaction (Qβ). The mechanism of Zn diffusion in non-stoichiometric Cu5Zn8 phase is discussed.

Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 571
Author(s):  
Li ◽  
Nie ◽  
Tian ◽  
Zhao ◽  
Zhang

The diffusion coefficient of gases in coal varies with time. This study aims to develop an unsteady dynamic diffusion (UDD) model based on the decay of diffusion coefficient with time and the change of integral. This study conducted a series of gas desorption and diffusion experiments with three different combinations of particle sizes and gas pressures and compared the diffusion coefficients of the three models. The UDD model exhibited good fitting results, and both the UDD and bidisperse models fitted the experimental data better than the unipore model. In addition, the dynamic diffusion coefficient (DDe) decreased rapidly in the initial stage but gradually decreased to a stable level in the later stage. All the effective diffusion coefficients of the three models negatively correlated with the particle size. In the unipore model, the diffusion coefficient of coal samples with three particle sizes increased with gas pressure. In the bidisperse and UDD models, the diffusion coefficients (Dae, Die, and DDe) of 0.25–0.5 mm and 0.5–1.0 mm coal samples increased with gas pressure. However, DDe and Dae of 1.0–1.25 mm coal samples increased first and then decreased. Furthermore, Die decreased first and then increased, with no sign of significant pressure dependence. Finally, the correlation and significance between the constant and diffusion coefficient in the UDD model was investigated.


2004 ◽  
Vol 03 (01) ◽  
pp. 69-90 ◽  
Author(s):  
BEHZAD HAGHIGHI ◽  
ALIREZA HASSANI DJAVANMARDI ◽  
MOHAMAD MEHDI PAPARI ◽  
MOHSEN NAJAFI

Viscosity and diffusion coefficients for five equimolar binary gas mixtures of SF 6 with O 2, CO 2, CF 4, N 2 and CH 4 gases are determined from the extended principle of corresponding states of viscosity by the inversion technique. The Lennard–Jones 12-6 (LJ 12-6) potential energy function is used as the initial model potential required by the technique. The obtained interaction potential energies from the inversion procedure reproduce viscosity within 1% and diffusion coefficients within 5%.


2008 ◽  
Vol 40 (02) ◽  
pp. 529-547
Author(s):  
Francisco J. Piera ◽  
Ravi R. Mazumdar ◽  
Fabrice M. Guillemin

In this paper we consider reflected diffusions with positive and negative jumps, constrained to lie in the nonnegative orthant of ℝ n . We allow for the drift and diffusion coefficients, as well as for the directions of reflection, to be random fields over time and space. We provide a boundary behavior characterization, generalizing known results in the nonrandom coefficients and constant directions of the reflection case. In particular, the regulator processes are related to semimartingale local times at the boundaries, and they are shown not to charge the times the process expends at the intersection of boundary faces. Using the boundary results, we extend the conditions for product-form distributions in the stationary regime to the case when the drift and diffusion coefficients, as well as the directions of reflection, are random fields over space.


The rate of evaporation of drops of dibutyl phthalate and butyl stearate of radius approx. 0.5 mm. has been studied by means of a microbalance over a range of atmospheric pressures down to approx. 0*1 mm. of mercury. Wide departures from Langmuir’s evaporation formula were found to occur at these low pressures, but results are in good accordance with the theory of droplet evaporation advanced by Fuchs which hitherto has not been tested experimentally. This experimental verification of Fuch’s theory for droplets of medium size evaporating at low pressures shows that the theory can be applied to the evaporation of very small drops at atmospheric pressure. The vapour pressures of the above liquids have been measured by Knudsen’s method and the evaporation and diffusion coefficients calculated fro n the experimental data.


1994 ◽  
Vol 353 ◽  
Author(s):  
Sergey V. Stefanovsky ◽  
Igor A. Ivanov ◽  
Anatolii N. Gulin

AbstractTo immobilize a high sulfate radioactive wastes a system Na2O-A12O3-P2O5-SO3 has been chosen as one where glasses have a relatively low melting points and good chemical durability. Glasses within partial system 44 Na2O, 20 A12O3 (36-x) P2O5 x SO3 have been prepared at 1000 °C. A possibility of assimilation up to 12 mole % of SO3 has been established. The basic properties of sulfate-containing glasses as density, microhardness, thermal expansion coefficient, transformation and deformation temperatures, viscosity, electric resistivity, leach rate of ions and diffusion coefficients of 22Na, 35S, 90Sr and 137Cs have been measured. Glass structure by infrared and EPR spectroscopies has been investigated.


Sign in / Sign up

Export Citation Format

Share Document