scholarly journals Linking ab initio Energetics to Experiment: Kinetic Monte Carlo Simulation of Transient Enhanced Diffusion of B in Si

1998 ◽  
Vol 538 ◽  
Author(s):  
Silva K. Theiss ◽  
M.-J. Caturla ◽  
T. Diaz de la Rubia ◽  
M.C. Johnson ◽  
Ant Uralt ◽  
...  

AbstractWe have developed a kinetic Monte Carlo (kMC) simulator that links atomic migration and binding energies determined primarily from first principles calculations to macroscopic phenomena and laboratory time scales. Input for the kMC simulation is obtained from a combination of ab initio planewave pseudopotential calculations, molecular dynamics simulations, and experimental data. The simulator is validated against an extensive series of experimental studies of the diffusion of B spikes in self-implanted Si. The implant energy, dose, and dose rate, as well as the detailed thermal history of the sample, are included. Good agreement is obtained with the experimental data for temperatures between 750 and 950°C and times from 15 to 255 s. At 1050°C we predict too little diffusion after 105 s compared to experiment: apparently, some mechanism which is not adequately represented by our model becomes important at this temperature. Below 1050°C, the kMC simulation produces a complete description over macroscopic time scales of the atomic level diffusion and defect reaction phenomena that operate during the anneals. This simulator provides a practical method for predicting technologically interesting phenomena, such as transient enhanced diffusion of B, over a wide range of conditions, using energetics determined from first-principles approaches.

2000 ◽  
Vol 616 ◽  
Author(s):  
I.I Oleinik ◽  
D.G. Pettifor ◽  
A.P. Sutton ◽  
C.C. Battaile ◽  
D.J. Srolovitz ◽  
...  

AbstractCVD diamond is an enabling material for diverse applications. In recent years, multiscale modelling of CVD growth in conjunction with experimental studies of the deposition processes has made a substantial progress towards our understanding of the fundamental growth chemistry and material quality. Macroscopic gas phase simulations of the CVD reactor, the mesoscale kinetic Monte-Carlo (KMC) modelling of the crystal growth and nanoscale modelling of the surface chemistry are three main legs in the multiscale hierarchy. In the framework of this methodology we have performed first-principles quantum mechanical calculations of bonding and reaction kinetics of the elementary growth processes and provided critical input in the form of atomistic growth mechanisms and reaction rates for the mesoscale KMC modelling of CVD diamond growth. A key success was achieved by combining first-principles and Monte Carlo studies to elucidate (100) growth mechanisms that have perplexed the diamond growth community for many years.


Author(s):  
Jing-hua Guo ◽  
Jin-Xiang Liu ◽  
Hongbo Wang ◽  
Haiying Liu ◽  
Gang Chen

In this work, combining the first-principles calculations with kinetic Monte Carlo (KMC) simulations, we constructed an irregular carbon bridge on the graphene surface and explored the process of H migration...


2009 ◽  
Vol 263 (1) ◽  
pp. 114-122 ◽  
Author(s):  
Qian-Lin Tang ◽  
Qi-Jun Hong ◽  
Zhi-Pan Liu

2021 ◽  
Vol 27 (4) ◽  
pp. 279-289
Author(s):  
Elahe Sayyadi ◽  
Asghar Mesbahi ◽  
Reza Eghdam Zamiri ◽  
Farshad Seyyed Nejad

Abstract Introduction: The present study aimed to investigate the radiation protection properties of silicon-based composites doped with nano-sized Bi2O3, PbO, Sm2O3, Gd2O3, WO3, and IrO2 particles. Radiation shielding properties of Sm2O3 and IrO2 nanoparticles were investigated for the first time in the current study. Material and methods: The MCNPX (2.7.0) Monte Carlo code was utilized to calculate the linear attenuation coefficients of single and multi-nano structured composites over the X-ray energy range of 10–140 keV. Homogenous distribution of spherical nanoparticles with a diameter of 100 nm in a silicon rubber matrix was simulated. The narrow beam geometry was used to calculate the photon flux after attenuation by designed nanocomposites. Results: Based on results obtained for single nanoparticle composites, three combinations of different nano-sized fillers Sm2O3+WO3+Bi2O3, Gd2O3+WO3+Bi2O3, and Sm2O3+WO3+PbO were selected, and their shielding properties were estimated. In the energy range of 20-60 keV Sm2O3 and Gd2O3 nanoparticles, in 70-100 keV energy range WO3 and for photons energy higher than 90 keV, PbO and Bi2O3 nanoparticles showed higher attenuation. Despite its higher density, IrO2 had lower attenuation compared to other nanocomposites. The results showed that the nanocomposite containing Sm2O3, WO3, and Bi2O3 nanoparticles provided better shielding among the studied samples. Conclusions: All studied multi-nanoparticle nanocomposites provided optimum shielding properties and almost 8% higher attenuation relative to single nano-based composites over a wide range of photon energy used in diagnostic radiology. Application of these new composites is recommended in radiation protection. Further experimental studies are suggested to validate our findings.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2728 ◽  
Author(s):  
Sergey V. Ushakov ◽  
Alexandra Navrotsky ◽  
Qi-Jun Hong ◽  
Axel van de Walle

Among transition metal carbides and nitrides, zirconium, and hafnium compounds are the most stable and have the highest melting temperatures. Here we review published data on phases and phase equilibria in Hf-Zr-C-N-O system, from experiment and ab initio computations with focus on rocksalt Zr and Hf carbides and nitrides, their solid solutions and oxygen solubility limits. The systematic experimental studies on phase equilibria and thermodynamics were performed mainly 40–60 years ago, mostly for binary systems of Zr and Hf with C and N. Since then, synthesis of several oxynitrides was reported in the fluorite-derivative type of structures, of orthorhombic and cubic higher nitrides Zr3N4 and Hf3N4. An ever-increasing stream of data is provided by ab initio computations, and one of the testable predictions is that the rocksalt HfC0.75N0.22 phase would have the highest known melting temperature. Experimental data on melting temperatures of hafnium carbonitrides are absent, but minimum in heat capacity and maximum in hardness were reported for Hf(C,N) solid solutions. New methods, such as electrical pulse heating and laser melting, can fill the gaps in experimental data and validate ab initio predictions.


Sign in / Sign up

Export Citation Format

Share Document