scholarly journals A comprehensive Monte Carlo study to design a novel multi-nanoparticle loaded nanocomposites for augmentation of attenuation coefficient in the energy range of diagnostic X-rays

2021 ◽  
Vol 27 (4) ◽  
pp. 279-289
Author(s):  
Elahe Sayyadi ◽  
Asghar Mesbahi ◽  
Reza Eghdam Zamiri ◽  
Farshad Seyyed Nejad

Abstract Introduction: The present study aimed to investigate the radiation protection properties of silicon-based composites doped with nano-sized Bi2O3, PbO, Sm2O3, Gd2O3, WO3, and IrO2 particles. Radiation shielding properties of Sm2O3 and IrO2 nanoparticles were investigated for the first time in the current study. Material and methods: The MCNPX (2.7.0) Monte Carlo code was utilized to calculate the linear attenuation coefficients of single and multi-nano structured composites over the X-ray energy range of 10–140 keV. Homogenous distribution of spherical nanoparticles with a diameter of 100 nm in a silicon rubber matrix was simulated. The narrow beam geometry was used to calculate the photon flux after attenuation by designed nanocomposites. Results: Based on results obtained for single nanoparticle composites, three combinations of different nano-sized fillers Sm2O3+WO3+Bi2O3, Gd2O3+WO3+Bi2O3, and Sm2O3+WO3+PbO were selected, and their shielding properties were estimated. In the energy range of 20-60 keV Sm2O3 and Gd2O3 nanoparticles, in 70-100 keV energy range WO3 and for photons energy higher than 90 keV, PbO and Bi2O3 nanoparticles showed higher attenuation. Despite its higher density, IrO2 had lower attenuation compared to other nanocomposites. The results showed that the nanocomposite containing Sm2O3, WO3, and Bi2O3 nanoparticles provided better shielding among the studied samples. Conclusions: All studied multi-nanoparticle nanocomposites provided optimum shielding properties and almost 8% higher attenuation relative to single nano-based composites over a wide range of photon energy used in diagnostic radiology. Application of these new composites is recommended in radiation protection. Further experimental studies are suggested to validate our findings.

2021 ◽  
Vol 27 (4) ◽  
pp. 291-298
Author(s):  
Samira Keramat Jou ◽  
Asghar Mesbahi ◽  
Reza Eghdam Zamiri ◽  
Farshad Seyednejad

Abstract Introduction: Recent studies have shown that the use of high-density nanoparticles (NPs) in concrete composition improves its radiation shielding properties. In the present study, the linear attenuation coefficients and photon scattering properties of newly developed high-density Nano-concretes have been calculated using the MCNPX Monte Carlo code. Material and methods: The shielding properties of Nano-concretes containing 10%, 20%, and 30% weight percentage of Osmium, Iridium and Barite NPs (100 nm) as well as ordinary concrete were investigated. The 6 and 18 MV photon beams of Varian Linac and 60 Co photons were used for simulation. Photon scattering flux was calculated for all Nano-concretes with 30 wt% of NPs and ordinary concrete at different angles. Results: In general, by adding Iridium, Osmium and Barite NPs to ordinary concrete, the linear attenuation coefficients increased. Despite a lower density relative to Iridium and Osmium, Nano-concretes containing Barite exhibited a higher linear attenuation coefficient due to their higher electron density. Conclusions: The results revealed a dependence between the scattered photon flux and the effective atomic number of Nano-concretes. With increasing the atomic number of fillers, the intensity of the scattered photon flux enlarged. Also, the scattered flux was higher for all types of concretes at 180 degrees relative to other angles.


2021 ◽  
Vol 196 ◽  
pp. 110566
Author(s):  
Jamila S. Alzahrani ◽  
Miysoon A. Alothman ◽  
Canel Eke ◽  
Hanan Al-Ghamdi ◽  
Dalal Abdulldh Aloraini ◽  
...  

10.14311/1466 ◽  
2011 ◽  
Vol 51 (6) ◽  
Author(s):  
J. Hölzl ◽  
J. Wilms ◽  
I. Kreykenbohm ◽  
Ch. Schmid ◽  
Ch. Grossberger ◽  
...  

The eROSITA instrument on board the Russian Spectrum Roentgen Gamma spacecraft, which will be launched in 2013,will conduct an all sky survey in X-rays. A main objective of the survey is to observe galaxy clusters in order to constrain cosmological parameters and to obtain further knowledge about dark matter and dark energy. For the simulation of the eROSITA survey we present a Monte-Carlo code generating a mock catalogue of galaxy clusters distributed accordingto the mass function of [1]. The simulation generates the celestial coordinates as well as the cluster mass and redshift. From these parameters, the observed intensity and angular diameter are derived. These are used to scale Chandra cluster images as input for the survey-simulation.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1733-C1733
Author(s):  
Martin Fuchs ◽  
Robert Sweet ◽  
Lonny Berman ◽  
Dileep Bhogadi ◽  
Wayne Hendrickson ◽  
...  

We present the final design of the x-ray optical systems and experimental stations of the two macromolecular crystallography (MX) beamlines, FMX and AMX, at the National Synchrotron Light Source-II (NSLS-II). Along with its companion x-ray scattering beamline, LIX, this suite of Advanced Beamlines for Biological Investigations with X-rays (ABBIX, [1]) will begin user operation in 2016. The pair of MX beamlines with complementary and overlapping capabilities is located at canted undulators (IVU21) in sector 17-ID. The Frontier Microfocusing Macromolecular Crystallography beamline (FMX) will deliver a photon flux of ~5x10^12 ph/s at a wavelength of 1 Å into a spot of 1 - 50 µm size. It will cover a broad energy range from 5 - 30 keV, corresponding to wavelengths from 0.4 - 2.5 Å. The highly Automated Macromolecular Crystallography beamline (AMX) will be optimized for high throughput applications, with beam sizes from 4 - 100 µm, an energy range of 5 - 18 keV (0.7 - 2.5 Å), and a flux at 1 Å of ~10^13 ph/s. Central components of the in-house-developed experimental stations are a 100 nm sphere of confusion goniometer with a horizontal axis, piezo-slits to provide dynamic beam size changes during diffraction experiments, a dedicated secondary goniometer for crystallization plates, and sample- and plate-changing robots. FMX and AMX will support a broad range of biomedical structure determination methods from serial crystallography on micron-sized crystals, to structure determination of complexes in large unit cells, to rapid sample screening and data collection of crystals in trays, for instance to characterize membrane protein crystals and to conduct ligand-binding studies. Together with the solution scattering program at LIX, the new beamlines will offer unique opportunities for advanced diffraction experiments with micro- and mini-beams, with next generation hybrid pixel array detectors and emerging crystal delivery methods such as acoustic droplet ejection. This work is supported by the US National Institutes of Health.


2016 ◽  
Vol 173 (1-3) ◽  
pp. 185-191 ◽  
Author(s):  
Angelo Infantino ◽  
Gianfranco Cicoria ◽  
Giulia Lucconi ◽  
Davide Pancaldi ◽  
Sara Vichi ◽  
...  

2014 ◽  
Vol 32 (2) ◽  
pp. 233-241 ◽  
Author(s):  
F. Fiorini ◽  
D. Neely ◽  
R.J. Clarke ◽  
S. Green

AbstractWe present a new simulation method to predict the maximum possible yield of X-rays produced by electron beams accelerated by petawatt lasers irradiating thick solid targets. The novelty of the method lies in the simulation of the electron refiluxing inside the target implemented with the Monte Carlo code Fluka. The mechanism uses initial theoretical electron spectra, cold targets and refiluxing electrons forced to re-enter the target iteratively. Collective beam plasma effects are not implemented in the simulation. Considering the maximum X-ray yield obtained for a given target thickness and material, the relationship between the irradiated target mass thickness and the initial electron temperature is determined, as well as the effect of the refiluxing on X-ray yield. The presented study helps to understand which electron temperature should be produced in order to generate a particular X-ray beam. Several applications, including medical and security imaging, could benefit from laser generated X-ray beams, so an understanding of the material and the thickness maximizing the yields or producing particular spectral characteristics is necessary. On the other more immediate hand, if this study is experimentally reproduced at the beginning of an experiment in which there is an interest in laser-driven electron and/or photon beams, it can be used to check that the electron temperature is as expected according to the laser parameters.


2011 ◽  
Vol 2 (0) ◽  
pp. 358-364 ◽  
Author(s):  
Giuseppe BATTISTONI ◽  
Francesco BROGGI ◽  
Markus BRUGGER ◽  
Mauro CAMPANELLA ◽  
Massimo CARBONI ◽  
...  

2021 ◽  
Vol 28 (2) ◽  
pp. 618-623
Author(s):  
Shotaro Tanaka ◽  
Shuto Suzuki ◽  
Tomohiro Mishima ◽  
Kazuhiro Kanda

Soft X-rays excite the inner shells of materials more efficiently than any other form of light. The investigation of synchrotron radiation (SR) processes using inner-shell excitation requires the beamline to supply a single-color and high-photon-flux light in the soft X-ray region. A new integrated computing multi-layered-mirror (MLM) monochromator was installed at beamline 07A (BL07A) of NewSUBARU, which has a 3 m undulator as a light source for irradiation experiments with high-photon-flux monochromatic light. The MLM monochromator has a high reflectivity index in the soft X-ray region; it eliminates unnecessary harmonic light from the undulator and lowers the temperature of the irradiated sample surfaces. The monochromator can be operated in a high vacuum, and three different mirror pairs are available for different experimental energy ranges; they can be exchanged without exposing the monochromator to the atmosphere. Measurements of the photon current of a photodiode on the sample stage indicated that the photon flux of the monochromatic beam was more than 1014 photons s−1 cm−2 in the energy range 80–400 eV and 1013 photons s−1 cm−2 in the energy range 400–800 eV. Thus, BL07A is capable of performing SR-stimulated process experiments.


2017 ◽  
Vol 12 ◽  
pp. 38-73
Author(s):  
Tomasz Wejrzanowski ◽  
Krzysztof Jan Kurzydlowski

The results of the studies presented here are devoted to understanding of microstructure effect on the processes and properties driven by diffusion. The role of various interfaces (intergranular, phase, free surface), as the high-energy defects, is underlined and investigated with special attention. The methodology relevant to analyses of the microstructural processes is first briefly presented. The capability and limitations of classical molecular dynamics, mesoscale Monte Carlo and cellular automaton techniques are described. Two examples of the diffusion driven processes analyzed at various length and time scale are shown: namely, grain growth in nanometallic materials and melting of thin embedded films. The modeling results are also accompanied with experimental studies. Thanks to application of numerical methods, models of relevant processes were proposed, which enabled to provide quantitative relationships between microstructure and the process kinetics. Such relationships can be later used for design of optimized materials for wide range of applications.


Sign in / Sign up

Export Citation Format

Share Document