Thermoelectric Properties of Cr3S4-Type Selenides

1998 ◽  
Vol 545 ◽  
Author(s):  
G. Jeffrey Snyder ◽  
T. Caillat ◽  
J. -P. Fleurial

AbstractSeveral compounds with the Cr3S4 structure type have been studied for their thermoelectric properties. All exhibit low lattice thermal conductivity of about 15 mW/cmK, independent of temperature. Many of the compounds, such as Co3Se4, Ni3Se4, Fe3Se4, Ti3Se4, FeNi2Se4, and FeCo2Se4, are metals with relatively low electrical resistivity and Seebeck coefficient. The Cr containing compounds, such as Cr3Se4, NiCr2Se4, CoCr2Se4, and FeCr2Se4, have the largest Seebeck coefficients and highest resistivity. thermoelectric applications is FeCr2Se4.

2006 ◽  
Vol 980 ◽  
Author(s):  
Jung-Hwan Kim ◽  
Norihiko L. Okamoto ◽  
Kyosuke Kishida ◽  
Katsushi Tanaka ◽  
Haruyuki Inui

AbstractThe crystal structures and thermoelectric properties of Ba-Ge based type-III clathrate compounds in Ba-Al-Ge and Ba-In-Ge systems have been investigated as a function of Al and In content. The absolute values of electrical resistivity and Seebeck coefficient increase, while that of lattice thermal conductivity decreases with increasing Al and In content. The increase in electrical resistivity and Seebeck coefficient is discussed in terms of the number of the excess electrons deduced from the Zintl concept, on the other hand, the decrease in lattice thermal conductivity is discussed in terms of an anisotropic deformation of the open-dodecahedron cage encapsulating Ba atom. High ZT values of 0.74 and 0.87 are obtained at 780 and 580 °C for Ba24Al12Ge88 and Ba24In16Ge84, respectively.


2005 ◽  
Vol 886 ◽  
Author(s):  
Atsuko Kosuga ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

ABSTRACTPolycrystalline-sintered samples of Tl2GeTe3, Tl4SnTe3, and Tl4PbTe3 were prepared by a solid-state reaction. Their thermoelectric properties were evaluated at temperatures ranging from room temperature to ca. 700 K by using the measured electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ). Despite their poor electrical properties, the dimensionless figure of merit ZT of all the compounds was relatively high, i.e., 0.74 at 673 K for Tl4SnTe3, 0.71 at 673 K for Tl4PbTe3, 0.29 at 473 K for Tl2GeTe3, due to the very low lattice thermal conductivity of the compounds.


2000 ◽  
Vol 626 ◽  
Author(s):  
Antje Mrotzek ◽  
Kyoung-Shin Choi ◽  
Duck-Young Chung ◽  
Melissa A. Lane ◽  
John R. Ireland ◽  
...  

ABSTRACTWe present the structure and thermoelectric properties of the new quaternary selenides K1+xM4–2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22. The compounds K1+xM4-2xBi7+xSe15 (M= Sn, Pb) crystallize isostructural to A1+xPb4-2xSb7+xSe15 with A = K, Rb, while K1-xSn5-xBi11+xSe22 reveals a new structure type. In both structure types fragments of the Bi2Te3-type and the NaCl-type are connected to a three-dimensional anionic framework with K+ ions filled tunnels. The two structures vary by the size of the NaCl-type rods and are closely related to β-K2Bi8Se13 and K2.5Bi8.5Se14. The thermoelectric properties of K1+xM4-2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22 were explored on single crystal and ingot samples. These compounds are narrow gap semiconductors and show n-type behavior with moderate Seebeck coefficients. They have very low thermal conductivity due to an extensive disorder of the metal atoms and possible “rattling” K+ ions.


2015 ◽  
Vol 29 (26) ◽  
pp. 1550154 ◽  
Author(s):  
F. Gao ◽  
Q. L. He ◽  
F. Wu ◽  
D. L. Yang ◽  
X. Hu ◽  
...  

The influence of [Formula: see text] ion sizes on the electrical resistivity, Seebeck coefficients, thermal conductivity and [Formula: see text] values of [Formula: see text] prepared by the solid-state reaction method was investigated from 373 K to 973 K. The electrical resistivity decreases with decreasing [Formula: see text] ion sizes. Both the electrical resistivity and the Seebeck coefficients have a transition at about 630 K. Especially, the transition phenomenon disappears gradually with decreasing [Formula: see text] ion sizes, and is attributed to the oxygen adsorption of [Formula: see text]. The [Formula: see text] values increase with rising temperature or decreasing [Formula: see text] ion sizes. The [Formula: see text] with the smallest [Formula: see text] size has the maximum [Formula: see text] value that reaches 0.1 at 973 K.


2000 ◽  
Vol 626 ◽  
Author(s):  
Jun-ichi Tani ◽  
Hiroyasu Kido

ABSTRACTIn order to investigate the thermoelectric properties of Re-doped β-FeSi2 (Fe1-xRexSi2), Ir-doped β-FeSi2 (Fe1-xIrxSi2), and Pt-doped β-FeSi2 (Fe1-xPtxSi2), the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of these samples have been measured in the temperature range between 300 and 1150 K. Fe1-xRexSi2 is p-type, while Fe1-xIrxSi2 and Fe1-xPt xSi2 are n-type over the measured temperature range. The solubility limits of dopant are estimated to be 0.2at% for Fe1-xRexSi2, 0.5at% for Fe1-xIrxSi2, and 1.9at% for Fe1-xPtxSi2. A maximum ZT value of 0.14 was obtained for Fe1-xPt xSi2 (x=0.03) at the temperature 847 K.


2001 ◽  
Vol 16 (12) ◽  
pp. 3343-3346 ◽  
Author(s):  
X. F. Tang ◽  
L. M. Zhang ◽  
R. Z. Yuan ◽  
L. D. Chen ◽  
T. Goto ◽  
...  

Effects of Ba filling fraction and Ni content on the thermoelectric properties of n-type BayNixCo4−xSb12 (x = 0−0.1, y = 0−0.4) were investigated at temperature range of 300 to 900 K. Thermal conductivity decreased with increasing Ba filling fraction and temperature. When y was fixed at 0.3, thermal conductivity decreased with increasing Ni content and reached a minimum value at about x = 0.05. Lattice thermal conductivity decreased with increasing Ni content, monotonously (y ≤ 0.1). Electron concentration and electrical conductivity increased with increasing Ba filling fraction and Ni content. Seebeck coefficient increased with increasing temperature and decreased with increasing Ba filling fraction and Ni content. The maximum ZT value of 1.25 was obtained at about 900 K for n-type Ba0.3Ni0.05Co3.95Sb12.


2013 ◽  
Vol 1490 ◽  
pp. 3-8 ◽  
Author(s):  
Dimas S. Alfaruq ◽  
James Eilertsen ◽  
Philipp Thiel ◽  
Myriam H Aguirre ◽  
Eugenio Otal ◽  
...  

AbstractThe thermoelectric properties of W-substituted CaMn1-xWxO3-δ (x = 0.01, 0.03; 0.05) samples, prepared by soft chemistry, were investigated from 300 K to 1000 K and compared to Nb-substituted CaMn0.98Nb0.02O3-δ. All compositions exhibit both an increase in absolute Seebeck coefficient and electrical resistivity with temperature. Moreover, compared to the Nb-substituted sample, the thermal conductivity of the W-substituted samples was strongly reduced. This reduction is attributed to the nearly two times greater mass of tungsten. Consequently, a ZT of 0.19 was found in CaMn0.97W0.03O3-δ at 1000 K, which was larger than ZT exhibited by the 2% Nb-doped sample.


2011 ◽  
Vol 228-229 ◽  
pp. 947-950
Author(s):  
Tao Zhu ◽  
Jun Min Zhou

Ca3-xHoxCo4O9 (x=0.0, 0.15, 0.3, 0.45) samples were prepared using solid reaction and the effect of Ho doping on their high thermoelectric properties were investigated. The substitution of Ho for Ca resulted in an increase of both thermopower and electrical resistivity which could be attributed to the decrease of hole concentrations. The Ho-doped samples had lower thermal conductivity than Ca3Co4O9 due to their lower electronic and lattice thermal conductivity. The largest ZT values were attained in Ca2.7Ho0.3Co4O9 sample.


2006 ◽  
Vol 21 (2) ◽  
pp. 480-483 ◽  
Author(s):  
D. Li ◽  
X.Y. Qin ◽  
J. Zhang

The thermoelectric properties of Gd intercalated compounds GdxTiS2 have been investigated at the temperatures from 5 to 310 K. The results indicate that Gd intercalation into TiS2 leads to substantial decrease of both its electrical resistivity and its lattice thermal conductivity κL (κL is lowered by 20% and 46% at 300 K for x = 0.025 and 0.05, respectively). Specially, as compared to the pristine TiS2 the figure of merit ZT of the intercalated compound GdxTiS2 has been improved at all temperatures investigated, and specifically, the ZT value of Gd0.05TiS2 at 300 K is about three times as large as that of TiS2.


2011 ◽  
Vol 1314 ◽  
Author(s):  
Takashi Itoh ◽  
Masashi Tachikawa

ABSTRACTCobalt triantimonide compounds are well known as materials with good thermoelectric properties over temperature range of 550-900 K. For further improving thermoelectric performance, reduction of thermal conductivity is required. In this study, we attempted to disperse carbon nanotubes (CNTs) homogeneously into the n-type CoSb3 compound for lowering lattice thermal conductivity by the phonon scattering. Powders of Co, Ni, Sb and Te were blended with molar ratios of n-type Co0.92Ni0.08Sb2.96Te0.04 compound, and the compound was synthesized through a pulse discharge sintering (PDS) process. After coarsely grinding the synthesized compound, CNTs were mixed with the compound powder at different mass% (0, 0.01, 0.05 and 0.1 mass%). Then, the mixture was mechanically ground with a planetary ball milling equipment. The ground composite powder was compacted and sintered by PDS. Thermoelectric properties (Seebeck coefficient, electrical resistivity and thermal conductivity) of the sintered samples were measured. It was confirmed that the fibrous CNTs existed homogeneously in the compound matrix. The absolute value of Seebeck coefficient slightly decreased with increase of CNT content. The minimum thermal conductivity was obtained at addition of 0.01mass%CNT, and the electrical resistivity was a little increased with CNT content. The maximum ZT of 0.98 was achieved at 853 K in the 0.01mass%CNT-added sample.


Sign in / Sign up

Export Citation Format

Share Document