Approaches Toward Chemically Prepared Multiple Quantum Well Structures

1998 ◽  
Vol 545 ◽  
Author(s):  
S. B. Cronin ◽  
T. Koga ◽  
X. Sun ◽  
Z. Ding ◽  
S.-C. Huang ◽  
...  

AbstractAn enhanced thermoelectric figure of merit, ZT, has been predicted for Bi2Te3 in the form of 2-dimensional quantum wells. A new approach to making multiple quantum well (MQW) structures for thermoelectric applications utilizing a chemical intercalation technique is proposed and investigated. It is proposed that by starting from Li intercalated Bi2Te3 and Bi2Se3, the layers of these materials can be separated by chemical means. The layers of Bi2Te3 or Bi2 Se3 can then be restacked, by self-assembly, forming a non-periodic array of quantum wells. These chemically prepared MQWs are characterized by X-ray diffraction, SEM (scanning electron microscopy) and TEM (transmission electron microscopy) at various stages in the sample preparation to assess the degree to which the actual samples match the proposal. Experimental measurements of the Seebeck coefficient (S) and the electrical conductivity (σ) were performed over a range of temperatures for the initial bulk materials. It is found that some of the steps in the proposed fabrication have been achieved but still much improvement is needed before any practical thermoelectric 2D-system can be provided.

1999 ◽  
Vol 607 ◽  
Author(s):  
W. Shi ◽  
D. H. Zhang ◽  
T. Osotchan ◽  
P.H. Zhang ◽  
S. F. Yoon ◽  
...  

AbstractBe-doped InGaAs/AIGaAs multiple quantum well (MQW) structures, grown by solid-source molecular beam epitaxy with different doping concentration in the wells, were investigated by xray diffraction and transmission electron microscopy (TEM). Some features have been observed. (1) The MQW mean mismatch increases from 1.176 × 10−3 to 1.195 × 10−3 and 1.29 × 10−3 for the structures with doping concentration of 1 × 1017 cm−3, 1 × 1018cm−3and 2 × 1019 cm−3 in the wells, respectively. (2) The period of the MQW also increases with doping density. (3) The intensity of the first order satellite in the rocking curves decreases as the Be concentration is increased, indicating that indium diffusion in the heavily doped wells is likely more significant than that in the lightly doped ones. (4) The full width at half maximum of the zero-order satellite peak becomes widened as doping concentration increases, indicating that high Be-doping in the well likely deteriorates the interfaces of the multiple quantum well stacks. In addition, TEM measurement is conducted and clear pictures on well and barrier layers of the structures are observed. The information obtained is of great value for the design of p-doped quantum well infrared photodetectors.


1987 ◽  
Vol 103 ◽  
Author(s):  
Jichai Jeong ◽  
J. C. Lee ◽  
M. A. Shahid ◽  
T. E. Schlesinger ◽  
A. G. Milnes

ABSTRACTX-ray diffraction, transmission electron microscopy (TEM), and photoluminescence measurements have been made on strained InxGa1-xAs/GaAs quantum well structures. The well widths measured from TEM are 187, 115 and 69 Å for an interrupted growth, and 218, 126, 60 Å for a non-interrupted growth. In the measured x-ray diffraction patterns, the Pendellosung fringes due to GaAs barriers are modulated by a broad weak peak mostly coming from the thickest InxGa1-xAs well layer and is fairly symmetric for the noninterrupted sample. For the interrupted quantum well, the x-ray diffraction pattern is less symmetric, since there is further modulation by another broader and weaker peak. This results show that the In content in the InxGa1-xAs well layers are not well controlled for the interrupted quantum well. Using actual thickness measured from TEM, x-ray diffraction patterns are calculated and good agreement is obtained between the measured and the calculated x-ray diffraction patterns. The three strained InxGa1-xAs/Gaks quantum wells grown without interruption produce high intensity and narrow full-width at half-maximum (FWHIM) of 2.9 meV of the photoluminescence peak. The photoluminescence peaks for the interrupted quantum well are relatively broad and asymmetric, and have lower intensities, indicating that better quality InxGa1-xAs/GaAs quantum wells can be grown without interruption.


1992 ◽  
Vol 263 ◽  
Author(s):  
D.W. Greve ◽  
R. Misra ◽  
M.A. Capano ◽  
T.E. Schlesinger

ABSTRACTWe report on the growth and characterization of multiple quantum well structures by UHV/ CVD epitaxy. X- ray diffraction is used to verify the expected layer periodicity and to determine the quantum well thickness. Photoluminescence measurements show peaks which we associate with recombination of excitons in the quantum wells. The measurements are consistent with high quality layers with small variation in quantum well thickness across a wafer.


2003 ◽  
Vol 798 ◽  
Author(s):  
Madalina Furis ◽  
Alexander N. Cartwright ◽  
Hong Wu ◽  
William J. Schaff

ABSTRACTThe need for efficient UV emitting semiconductor sources has prompted the study of a number of heterostructures of III-N materials. In this work, the temperature dependence of the photoluminescence (PL) properties of UV-emitting GaN/AlN multiple quantum well (MQW) heterostructures were investigated in detail. In all samples studied, the structure consisted of 20 GaN quantum wells, with well widths varying between 7 and 15 Å, clad by 6nm AlN barriers, grown on top of a thick AlN buffer that was deposited on sapphire by molecular beam epitaxy. The observed energy corresponding to the peak of the emission spectrum is in agreement with a model that includes the strong confinement present in these structures and the existence of the large built-in piezoelectric field and spontaneous polarization present inside the wells. The observed emission varies from 3.5 eV (15 Å well) to 4.4 eV (7 Å well). Two activation energies associated with the photoluminescence quenching are extracted from the temperature dependence of the time-integrated PL intensity. These activation energies are consistent with donor and acceptor binding energies and the PL is dominated by recombination involving carriers localized on donor and/or acceptor states.Moreover, the temperature dependence of the full width at half-maximum (FWHM) of the PL feature indicates that inhomogeneous broadening dominates the spectrum at all temperatures. For the 15 and 13 Å wells, we estimate that the electron-phonon interaction is responsible for less than 30% of the broadening at room temperature. This broadening is negligible in the 9 Å wells over the entire temperature range studied. Well width fluctuations are primarily responsible for the inhomogeneous broadening, estimated to be of the order of 250meV for one monolayer fluctuation in well width.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 491-496 ◽  
Author(s):  
F. Chatenoud ◽  
K. M. Dzurko ◽  
M. Dion ◽  
D. Moss ◽  
R. Barber ◽  
...  

Calculations of multiple-quantum-well laser threshold current show that a common minimum current value exists for each number of wells, at an appropriate cavity length. This optimum cavity length decreases rapidly with increasing number of wells, for instance from about 300 to 110 μm for one to three wells. Granded-index separate-confinement heterostructure (GRINSCH) lasers with 1–10 quantum wells, grown by molecular beam epitaxy, show consistently low threshold currents that agree well with theoretical predictions. Lasing is achieved at 160 A cm−2 and 4.6 mA for broad-area and ridge waveguide single-quantum-well devices, respectively. The field-dependent electroabsorption of these devices when operating as wave-guide modulators indicates good modulation properties for one and three quantum-well structures, with on:off ratios above 55 at lasing wavelength. The behavior becomes more complex with increasing number of wells. This systematic study of discrete multiple-quantum-well lasers and modulators demonstrates that GRINSCH structures with 1–3 wells are the most suitable for monolithic integration. Design rules for the laser cavity are also presented for numbers of wells ranging from 1 to 10.


1996 ◽  
Vol 74 (S1) ◽  
pp. 252-255
Author(s):  
Zhi Zhong Xu ◽  
D. Morris

The role of electron–electron scattering in the dynamics of inter-subband relaxation in GaAs quantum wells is investigated theoretically. The scattering rate is calculated using the Fermi golden rule, as a function of the carrier densities. The dependence of the inter-subband relaxation time on the quantum-well width is also investigated. Calculations are performed for multiple quantum-well structures with well widths varying from 80 to 240 Å (1 Å = 10−10 m). The hot electron distribution and the subband occupation function are taken into account in these calculations. Results show that the electron–electron scattering rate increases linearly as a function of the carrier densities. A band-filling effect limits the efficiency of this mechanism under high carrier densities (> 1012 cm−2). For thick well (180 Å) structures, this relaxation channel is as efficient as the phonon relaxation channel.


Sign in / Sign up

Export Citation Format

Share Document