Fullerene Derivatives as Novel Resist Materials for Fabrication of MEMS Devices by Electron Beam Lithography

1998 ◽  
Vol 546 ◽  
Author(s):  
A.P.G. Robinson ◽  
R.E. Palmer ◽  
T. Tada ◽  
T. Kanayama ◽  
E.J. Shelley ◽  
...  

AbstractThe fabrication of MEMS and electronic devices relies heavily on lithography. We have explored the application of derivatives of C60, as high resolution, high etch durability resists. Spin coating was used to produce films of various methanofullerenes on silicon substrates, with thickness ranging from 20 to 200 nm. These films behave as effective high resolution negative tone electron beam resists allowing sub 20 nm patterning of silicon which compares favorably with other negative tone resists. Organic solvents such as monochlorobenzene and chloroform can be used to develop the exposed films. The films have sensitivities of 4 × 10−3 to 8 × 10−4 C/cm2 for 20 keV electrons, more than an order of magnitude higher than the sensitivity of C60,. The dry etch durabilities of these compounds are considerably higher than those of conventional resists. A silicon grid with hole depth 160 nm and wall thickness 20 nm has been fabricated to demonstrate the high resolution and high etch durability of these resists.

1999 ◽  
Vol 584 ◽  
Author(s):  
A. P. G. Robinson ◽  
R. E. Palmer ◽  
T. Tada ◽  
T. Kanayama ◽  
E. J. Shelley ◽  
...  

AbstractWe report systematic studies of the response of C60 derivatives to electron beam irradiation. Films of fourteen different mono, tris and tetra adduct methanofullerene C60 derivatives were produced by spin coating on hydrogen terminated silicon substrates. Exposure of the films to a 20 keV electron beam substantially altered the dissolution rate of the derivative films in organic solvents such as monochlorobenzene. All of the derivatives exhibited negative tone resist behaviour with sensitivities between ∼ 8.5 × 10-4 and ∼ 4 × 10-3 C/cm2 107, much higher than that of C60. Features with widths of ∼ 20 nm were produced using these compounds, and the etch ratios of the compounds were found to be more than twice those of a standard novolac based resist (SAL601).


1999 ◽  
Vol 584 ◽  
Author(s):  
A. P. G. Robinson ◽  
R. E. Palmer ◽  
T. Tada ◽  
T. Kanayamat ◽  
M. T. Allen ◽  
...  

AbstractWe report the development of a new family of electron beam resists based on liquid crystalline polysubstituted derivatives of triphenylene. These new resists show excellent performance in terms of both high resolution and high durability to plasma etching. Films of the derivatives have been produced in a controlled manner via room temperature spin coating on hydrogen terminated silicon substrates. The dissolution behaviour of the derivatives in various organic solvents was altered by exposure to a 20 keV electron beam. The solubility of the derivative hexapentyloxytriphenylene, in polar solvents, was substantially increased by electron doses greater than ∼ 3 × 10-4 C/cm2 (positive tone behaviour). Doses greater than ∼ 2.5 × 10-3 C/cm2 led to negative tone behaviour in both polar and non-polar solvents. Other derivatives also demonstrated a reduction in their dissolution rate for doses between ∼ 1 × 10-3 and ∼ 7 × 10-3 C/cm2. The derivative sensitivity was found to be roughly proportional to the molecular mass. Negative tone patterns were found to have an etch durability ∼ 70 % greater than that of a conventional novolac based negative tone resist (SAL601). The performance of these new resists has been demonstrated by the definition of line and space patterns with a resolution of ∼ 14 nm, whilst structures with an aspect ratio of.∼ 50 to 1 were etched into the silicon substrate.


2015 ◽  
Vol 6 ◽  
pp. 976-986 ◽  
Author(s):  
Alexander Samardak ◽  
Margarita Anisimova ◽  
Aleksei Samardak ◽  
Alexey Ognev

The paper presents a method for the high-resolution production of polymer nanopatterns with controllable geometrical parameters by means of a single-spot electron-beam lithography technique. The essence of the method entails the overexposure of a positive-tone resist, spin-coated onto a substrate where nanoscale spots are exposed to an electron beam with a dose greater than 0.1 pC per dot. A single-spot enables the fabrication of a nanoring, while a chain of spots placed at distance of 5–30 nm from each other allows the production of a polymer pattern of complex geometry of sub-10 nm resolution. We demonstrate that in addition to the naturally oxidized silicon substrates, gold-coated substrates can also successfully be used for the single-spot nanopattering technique. An explanation of the results related to the resist overexposure was demonstrated using Monte Carlo simulations. Our nanofabrication method significantly accelerates (up to 10 times) the fabrication rate as compared to conventional lithography on positive-tone resist. This technique can be potentially employed in the electronics industry for the production of nanoprinted lithography molds, etching masks, nanoelectronics, nanophotonics, NEMS and MEMS devices.


2014 ◽  
Vol 215 ◽  
pp. 459-461
Author(s):  
Alexander S. Samardak ◽  
Margarita V. Anisimova ◽  
Alexey V. Ognev ◽  
Vadim Yu. Samardak ◽  
Liudmila A. Chebotkevich

We present a novel method of pattern nanofabrication with high resolution and small shape defects using the traditional electron-beam lithography (EBL) or only a scanning electron microscope (SEM). Our method of Spot EBL is extremely fast, highly scalable on big areas, capable of sub-20 nm resolution and fabrication of polymer patterns with complicated shapes. We show the nanostructure images fabricated by Spot EBL and propose practical applications of the novel method.


2012 ◽  
Vol 51 (6S) ◽  
pp. 06FC05 ◽  
Author(s):  
Mohammad Ali Mohammad ◽  
Kirill Koshelev ◽  
Taras Fito ◽  
David Ai Zhi Zheng ◽  
Maria Stepanova ◽  
...  

Author(s):  
A. P. G. Robinson ◽  
R. E. Palmer ◽  
T. Tada ◽  
T. Kanayama ◽  
M. T. Allen ◽  
...  

1988 ◽  
Author(s):  
Mark deGrandpre ◽  
Karen Graziano ◽  
Stephen D. Thompson ◽  
Hua-yu Liu ◽  
Lauren Blum

Sign in / Sign up

Export Citation Format

Share Document