A Study of Rock Matrix Diffusion Properties by Electrical Conductivity Measurements

1999 ◽  
Vol 556 ◽  
Author(s):  
Y. Ohlsson ◽  
I. Neretnieks

AbstractTraditional rock matrix diffusion experiments on crystalline rock are very time consuming due to the low porosity and extensive analysis requirements. Electrical conductivity measurements are, on the other hand, very fast and larger samples can be used than are practical in ordinary diffusion experiments. The effective diffusivity of a non-charged molecule is readily evaluated from the measurements, and influences from surface conductivity on diffusion of cations can be studied. A large number of samples of varying thickness can be measured within a short period, and the changes in transport properties with position in a rock core can be examined.In this study the formation factor of a large number of Äspö diorite samples is determined by electrical conductivity measurements. The formation factor is a geometric factor defined as the ratio between the effective diffusivity of a non-charged molecule, to that of the same molecule in free liquid. The variation of this factor with position along a borecore and with sample length, and its coupling to the porosity of the sample is studied. Also the surface conductivity is studied. This was determined as the residual conductivity after leaching of the pore solution ions. The formation factor of most of the samples is in the range 1E-5 to 1E-4, with a mean value of about 5E-5. Even large samples (4-13 cm) give such values. The formation factor increases with increasing porosity and the change in both formation factor and porosity with position in the borecore can be large, even for samples close to each other.The surface conductivity increases with increasing formation factor for the various samples but the influence on the pore diffusion seems to be higher for samples of lower formation factor. This suggests that the relation between the pore surface area and the pore volume is larger for samples of low formation factor.

2000 ◽  
Vol 663 ◽  
Author(s):  
Y. Ohlsson ◽  
I. Neretnieks

ABSTRACTMatrix diffusion laboratory experiments in dense porous rock are generally very time consuming and one is limited to rather short diffusion lengths, as well as to a small amount of samples. The large heterogeneity of rock, on the other hand, demands a large quantity of samples that are large enough to exclude effects from e.g. increases in interconnected porosity compared to that of the pristine rock.Electrical conductivity measurements are very fast and larger samples can be used than is practical in ordinary diffusion experiments. The effective diffusivity of a non-charged molecule is readily evaluated from the measurements, and influences from surface conductivity on diffusion of cations can be studied.In this study traditional through diffusion experiments as well as electrical conductivity measurements are carried out on the same rock samples. The formation factor is determined by both methods, and the methods are compared and discussed.The surface conductivity is studied by exchanging the surface sites with Na+, Sr2+ and Cs+. After leaching out the free pore ions the surface conductivity is measured.With the electrical conductivity method the formation factor is determined directly, whereas it has to be calculated using the bulk liquid diffusion coefficient in the diffusion experiments. This causes some uncertainties in the comparison between the experiments. In estimating the bulk liquid diffusivity, the value for infinitely diluted solutions and in pure water environment is commonly used. The calculated formation factor may therefore be somewhat underestimated.


1994 ◽  
Vol 353 ◽  
Author(s):  
Kari Hartikainen ◽  
A. HautojÄrvi ◽  
H. Pietarila ◽  
J. Timonen

AbstractA new gas flow technique is introduced such that experiments on very long samples are possible. This new technique together with increased accuracy of the measurements, allows the observation of power law tails in the break-through curves. Dispersion in these experiments can be controlled in great detail, and therefore the power law tails can be used to determine very accurately the parameters relevant in matrix diffusion. Results for rock and metal samples are shown, and they are fitted with model calculations which include both dispersion and matrix diffusion. The introduced technique, which is designed for ordinary drill cores, is suitable for scanning a large number of samples in a very short time.


2001 ◽  
Vol 47 (2-4) ◽  
pp. 117-125 ◽  
Author(s):  
Yvonne Ohlsson ◽  
Martin Löfgren ◽  
Ivars Neretnieks

2000 ◽  
Vol 663 ◽  
Author(s):  
Y. Ohlsson ◽  
K. Arnerdal ◽  
I. Neretnieks

ABSTRACTThe interest for studying the mobility of near surface cat-ions in rock and clay pores has increased during the last 3-4 years. Several researchers have worked experimentally with liquid phase diffusion experiments and with electrical conductivity measurements, and on developing models describing the phenomenon. Our own measurements have shown that surface mobility can contribute substantially to ionic transport in crystalline rock. Some recently proposed models for surface mobility are discussed.Part of the problem in comparing different surface transport models lies within the different definitions of what the diffuse layer and the Stern layer really comprise. There are also differences in what is actually considered to be adsorbed ions and what part of these ions that can be considered mobile. We attempt to reconcile some of the different approaches by describing some very simplified concepts upon which all the models are based. This permits us to discuss the different views within one framework. Experimental results interpreted using the various models are discussed in the context of the simplified framework.


1991 ◽  
Vol 18 (3) ◽  
pp. 611-627 ◽  
Author(s):  
Marta L. Fiorotto ◽  
William J. Klish

2019 ◽  
Vol 104 (12) ◽  
pp. 1800-1805
Author(s):  
George M. Amulele ◽  
Anthony W. Lanati ◽  
Simon M. Clark

Abstract Starting with the same sample, the electrical conductivities of quartz and coesite have been measured at pressures of 1, 6, and 8.7 GPa, respectively, over a temperature range of 373–1273 K in a multi-anvil high-pressure system. Results indicate that the electrical conductivity in quartz increases with pressure as well as when the phase change from quartz to coesite occurs, while the activation enthalpy decreases with increasing pressure. Activation enthalpies of 0.89, 0.56, and 0.46 eV, were determined at 1, 6, and 8.7 GPa, respectively, giving an activation volume of –0.052 ± 0.006 cm3/mol. FTIR and composition analysis indicate that the electrical conductivities in silica polymorphs is controlled by substitution of silicon by aluminum with hydrogen charge compensation. Comparing with electrical conductivity measurements in stishovite, reported by Yoshino et al. (2014), our results fall within the aluminum and water content extremes measured in stishovite at 12 GPa. The resulting electrical conductivity model is mapped over the magnetotelluric profile obtained through the tectonically stable Northern Australian Craton. Given their relative abundances, these results imply potentially high electrical conductivities in the crust and mantle from contributions of silica polymorphs. The main results of this paper are as follows:The electrical conductivity of silica polymorphs is determined by impedance spectroscopy up to 8.7 GPa.The activation enthalpy decreases with increasing pressure indicating a negative activation volume across the silica polymorphs.The electrical conductivity results are consistent with measurements observed in stishovite at 12 GPa.


1994 ◽  
Vol 359 ◽  
Author(s):  
Jun Chen ◽  
Haiyan Zhang ◽  
Baoqiong Chen ◽  
Shaoqi Peng ◽  
Ning Ke ◽  
...  

ABSTRACTWe report here the results of our study on the properties of iodine-doped C60 thin films by IR and optical absorption, X-ray diffraction, and electrical conductivity measurements. The results show that there is no apparent structural change in the iodine-doped samples at room temperature in comparison with that of the undoped films. However, in the electrical conductivity measurements, an increase of more that one order of magnitude in the room temperature conductivity has been observed in the iodine-doped samples. In addition, while the conductivity of the undoped films shows thermally activated temperature dependence, the conductivity of the iodine-doped films was found to be constant over a fairly wide temperature range (from 20°C to 70°C) exhibiting a metallic feature.


Sign in / Sign up

Export Citation Format

Share Document