Microstructure Evolution During Solid-State Reactions in Polycrystalline Nb/Al and Ti/Ai Multilayer Thin-Films

1999 ◽  
Vol 562 ◽  
Author(s):  
G. Lucadamo ◽  
K. Barmak ◽  
D. T. Carpenter ◽  
C. Lavoie ◽  
C. Cabral ◽  
...  

ABSTRACTThe microstructural changes that occur during the reaction of sputter-deposited Nb/Al and Ti/Al multilayer thin-films with bilayer thicknesses ranging from 10 nm to 333 nm have been studied. The films were deposited with an overall stoichiometry of XAl3 (X = Nb,Ti) and subsequently annealed to different stages of the reaction in a differential scanning calorimeter (DSC). Data obtained from cross-sectional transmission electron microscopy (XTEM), and in situ synchrotron X-ray diffraction (XRD) experiments have provided evidence for a two-stage reaction mechanism for the formation of NbAl3. Microscopy results from a film with a bilayer period of 333 nm showed a microstructure that was consistent with two-dimensional growth in the plane of the interface. A uniform, 10 nm thick continuous layer of the product phase was formed followed by growth normal to the interface that initially consisted of larger, faceted grains. By the end of the reaction, an equiaxed NbAl3 grain structure was observed. High resolution elemental mapping using a scanning transmission electron microscope (STEM) revealed penetration of Nb into the Al layer and enhanced growth in regions where Al grain boundaries intersected the interface. Characterization of microstructure evolution in the Ti/Al system was complicated by the formation of two metastable structures consisting of cubic Ll2 followed by tetragonal DO23, and finally the equilibrium, tetragonal DO22 structure. However, the metastable phase transition temperatures were clearly isolated using the in situ XRD technique.

Author(s):  
G. Lucadamo ◽  
K. Barmak ◽  
C. Michaelsen

The subject of reactive phase formation in multilayer thin films of varying periodicity has stimulated much research over the past few years. Recent studies have sought to understand the reactions that occur during the annealing of Ni/Al multilayers. Dark field imaging from transmission electron microscopy (TEM) studies in conjunction with in situ x-ray diffraction measurements, and calorimetry experiments (isothermal and constant heating rate), have yielded new insights into the sequence of phases that occur during annealing and the evolution of their microstructure.In this paper we report on reactive phase formation in sputter-deposited lNi:3Al multilayer thin films with a periodicity A (the combined thickness of an aluminum and nickel layer) from 2.5 to 320 nm. A cross-sectional TEM micrograph of an as-deposited film with a periodicity of 10 nm is shown in figure 1. This image shows diffraction contrast from the Ni grains and occasionally from the Al grains in their respective layers.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


1995 ◽  
Vol 398 ◽  
Author(s):  
K. Barmak ◽  
S. Vivekanand ◽  
F. Ma ◽  
C. Michaelsen

ABSTRACTThe formation of the first phase in the reaction of sputter-deposited Nb/Al multilayer thin films has been studied by power-compensated and heat-flux differential scanning calorimetry, x-ray diffraction and transmission electron microscopy. The modulation periods of the films are in the range of 10-500 nm. Both types of calorimetrie measurements, performed at a constant heating rate, show the presence of two peaks (A and B) for the formation of the single product phase, NbAl3. Isothermal calorimetrie scans show that peak A is associated with a nucleation and growth type transformation. The formation of NbAl3 is thus interpreted as a two-stage process of nucleation and lateral growth to coalescence (peak A) followed by normal growth until the consumption of one or both reactants (peak B). Transmission electron microscopy investigations of samples annealed into the first stage of NbAl3 formation show the presence of this phase at the Nb/Al interface and its preferential growth along the grain boundaries of the Al layer. The latter highlights the role of reactant phase grain structure in product phase formation.


2005 ◽  
Vol 892 ◽  
Author(s):  
Xiaojun Weng ◽  
Srinivasan Raghavan ◽  
Elizabeth C Dickey ◽  
Joan M Redwing

AbstractWe have studied the evolution of stress and microstructure of compositionally graded Al1-xGaxN (0 ≤ x ≤1) buffer layers on (111) Si substrates with varying thicknesses. In-situ stress measurements reveal a tensile-to-compressive stress transition that occurs near the half-thickness in each buffer layer. Cross-sectional transmission electron microscopy (TEM) shows a significant reduction in threading dislocation (TD) density in the top half of the buffer layer, suggesting that the compressive stress enhances the threading dislocation annihilation. The composition of the buffer layers varies linearly with thickness, as determined by X-ray energy dispersive spectrometry (XEDS). The composition grading-induced compressive stress offsets the tensile stress introduced by microstructure evolution, thus yielding a tensile-to-compressive stress transition at x ≈ 0.5.


1997 ◽  
Vol 505 ◽  
Author(s):  
Xingtian Cui ◽  
Q. Y Chen ◽  
Yongxiang Guo ◽  
W. K. Chu

ABSTRACTHigh quality YBa2Cu3O7–δ, (YBCO) epitaxial thin films grown on MgO substrate with a strainrelieved SrTiO3 (STO) buffer layer have been investigated by Rutherford backscattering spectrometry (RBS), ion channeling and high resolution cross sectional transmission electron microscopy (XTEM). The in-situ growth of STO buffer layer along with the YBCO films was carried out by pulsed laser ablation. In this work, minimum yield of channeling measurements have shown that a very thin STO buffer layer is sufficient to grow highly crystalline YBCO thin films on MgO substrates. TEM studies showed that the STO layers were strain-relieved by an array of periodic edge dislocations. The YBCO films on STO buffer, as in those grown directly on an STO substrate, evolved from a strained layer to a largely dislocation free area.


1992 ◽  
Vol 275 ◽  
Author(s):  
K. Uehara ◽  
H. Sakai ◽  
H. Hayashi ◽  
Y. Shiohara ◽  
S. Tanaka

ABSTRACTHigh-resolution transmission electron microscopy (HREM) has been used to study the microstructures of Y-Ba-Cu-0 superconducting thin films in which the YBa2Cu4O8 phase was the main phase. From cross-sectional observations, the c-normal 123 phase predominated in the film near the substrate surface, while the c-normal 124 phase occupied the region near the film surface. Another remarkable microstructure was that a-normal 123 variants overcame the c-normal 123 region, but the c-normal 124 phase surpassed the a-normal 123 phase in the upper part of the film.


1999 ◽  
Vol 589 ◽  
Author(s):  
F. Radulescu ◽  
J.M. Mccarthy ◽  
E. A. Stach

AbstractIn-situ TEM annealing experiments on the Pd (20 nm) / a-Ge (150 nm) / Pd (50 nm) GaAs ohmic contact system have permitted real time determination of the evolution of contact microstructure. As-deposited cross-sectional samples of equal thickness were prepared using a focused ion beam (FIB) method and then subjected to in-situ annealing at temperatures between 130-400 °C. Excluding Pd-GaAs interactions, four sequential solid state reactions were observed during annealing of the Pd:Ge thin films. First, interdiffusion of the Pd and Ge layers occurred, followed by formation of the hexagonal Pd2Ge phase. This hexagonal phase then transformed into orthorhombic PdGe, followed by solid state epitaxial growth of Ge at the contact / GaAs interface. The kinetics of the solid state reactions, which occur during ohmic contact formation, were determined by measuring the grain growth rates associated with each phase from the videotape observations. These data agreed with a previous study that measured the activation energies through a differential scanning calorimetry (DSC) method. We established that the Ge transport to the GaAs interface was dependent upon the grain size of the PdGe phase. The nucleation and growth of this phase was demonstrated to have a significant effect on the solid phase epitaxial growth of Ge on GaAs. These findings allowed us to engineer an improved two step annealing procedure that would control the shape and size of the PdGe grains. Based on these results, we have established the suitability of combining FIB sample preparation with in-situ cross-sectional transmission electron microscopy (TEM) annealing for studying thin film solid-state reactions.


1990 ◽  
Vol 187 ◽  
Author(s):  
E. Ma ◽  
L.A. Clevenger ◽  
C.V. Thompson ◽  
K.N. Tu

AbstractThe growth of an amorphous Ti-Si phase and subsequent formation of crystalline silicides during solid-state reactions in Ti/a-Si multilayer films have been studied using power-compensated differential scanning calorimetry, cross-sectional transmission electron microscopy, and thin-film x-ray diffraction. By analyzing calorimetric data we have determined the activation energies for the formation of the various silicides (amorphous Ti-silicide, TiSi, C49-TiSi2, Ti5Si3) as well as their heats of formation. An amorphous silicide is the first phase to form during heating and we have measured the composition profile of this amorphous layer using scanning transimission electron microscopy. Metastable phase equilibria in the Ti-Si system are discussed in light of the thermodynamic and compositional information obtained in our experiments.


1993 ◽  
Vol 320 ◽  
Author(s):  
Stanton P. Ashburn ◽  
Douglas T. Grider ◽  
Mehmet C. ÖztÜrk ◽  
Gari Harris ◽  
Dennis M. Maher

ABSTRACTIn this paper we present results on solid state reactions between Ti and Si1−xGex alloys selectively deposited onto Si (100) substrates using rapid thermal annealing (RTA) for contact applications in novel device structures. Germanium concentrations of 0%, 30%, 50%, and 100% within the reacting Si1−xGex alloy are investigated. The Si1−xGex alloys (approximately 2500 ° thick) are deposited using rapid thermal chemical vapor deposition (RTCVD). Titanium is then deposited by evaporation. Sheet resistance measurements as a function of RTA temperature (10 second anneals) provide indications of various phases that occur during the reactions through the formation of constant sheet resistance plateaus. The RTA temperature required for the formation of a minimum resistivity phase is observed to increase for increasing Ge concentrations within the reacting Si1−xGex alloy. Using x-ray diffraction we have determined that for the reactions of Ti with Si the C49 TiSi2 metastable phase forms prior to the minimum resistivity C54 TiSi2 phase. For the reactions between Ti and Ge a minimum resistivity TiGe2 phase also with the C54 structure forms, however, this phase is preceeded not by a C49 TiGe2 structure, but by a Ti6Ge5 phase. The minimum resistivity phases for Ti reactions with 30% and 50% Ge Si1−xGex, alloy reactions also have a C54 structure with unit cell dimensions varying from that of TiSi2) to TiGe2 as the Ge concentration is increased. The grain structures for the reactions are investigated by cross-sectional transmission electron microscopy (XTEM). As the Ge concentration within the reacting alloy decreases the lateral grain size for the C54 structures increases. A self-aligned germanosilicide process is identified and used to fabricate raised, ultrashallow junctions with Ti(SiGe)2 (germanosilicide) contacts. Forward and reverse bias characterization of the junctions indicate that leakage current induced during silicidation can be eliminated using raised junctions with germanosilicide contacts.


Sign in / Sign up

Export Citation Format

Share Document