Models for Electronic Conduction Across Ceramic Grain Boundaries

1985 ◽  
Vol 60 ◽  
Author(s):  
L. C. Burton

AbstractElectronic current flow over grain boundary potential barriers for low resistance grains is first reviewed. It is then shown that if the resistance of the grains increases and/or grain size is reduced, the grains may be totally depleted of mobile charge. The grain boundary barrier is thus reduced to (D/2W)2 of its original large grain value, D being grain width and W the full space charge width. For high resistivity grains satisfying the relation D ≪ 2W, the conduction band becomes essentially flat. Phenomena formerly caused by grain boundary potential barriers (varistor and PTC effects seen in semiconducting ceramic) will be greatly reduced, or eliminated.Commercial COG and X7R MLC capacitors exhibit a transition from super-ohmic to ohmic behavior at high voltages, paralleling the behavior of the varistor. Two possible mechanisms that could account for this are varistor-like grain boundary behavior, or space charge limited diffusion current.

2003 ◽  
Vol 9 (S02) ◽  
pp. 672-673
Author(s):  
Pradyumna L. Prabhumirashi ◽  
Andrew R. Lupini ◽  
Stephen J. Pennycook ◽  
Vinayak P. Dravid

2001 ◽  
Vol 664 ◽  
Author(s):  
Toshio Kamiya ◽  
Yong T. Tan ◽  
Yoshikazu Furuta ◽  
Hiroshi Mizuta ◽  
Zahid A.K. Durrania ◽  
...  

ABSTRACTCarrier transport was investigated in two different types of ultra-thin silicon films, polycrystalline silicon (poly-Si) films with large grains > 20 nm in size and hydrogenated nanocrystalline silicon (nc-Si:H) films with grains 4 nm – 8 nm in size. It was found that there were local non-uniformities in grain boundary potential barriers in both types of films. Single-electron charging effects were observed in 30 nm × 30 nm nanowires fabricated in 30 nm-thick nc-Si:H films, where the electrons were confined in crystalline silicon grains encapsulated by amorphous silicon. In contrast, the poly-Si nanowires of similar dimensions showed thermionic emission over the grain boundary potential barriers formed by carrier trapping in grain boundary defects.


2018 ◽  
Vol 17 (1) ◽  
pp. 41-43
Author(s):  
A.A. Razak ◽  
W.H. Khoo ◽  
Suhana Mohamed Sultan

Recently ZnO has drawn a lot of attention in semiconductor industry due to its interesting features. High exciton binding energy, high resistivity against radiation, high breakdown voltage, low temperature deposition are some of the interesting features of this material. Zinc oxide TFT device gains an increasing interest for its potential in sensing applications due to its biocompability, chemical stability and  simple fabrication process with various methods and high surface-to-volume ratio. However, ZnO TFT devices from previous work exhibited poor ION and field effect mobility. This work investigates the cause of its poor performance by focusing only two factors: traps and defects in the channel and grain boundary. The work was performed in Silvaco TCAD 2D simulator. It was found that a single grain boundary in the channel causes a reduction of the ION by 95%. The effect in the ION is less severe when traps and defects were introduced in the ZnO channel. The results can assist in optimizing the TFT device performance for sensing applications.


InfoMat ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 409-423 ◽  
Author(s):  
Behzad Bahrami ◽  
Sally Mabrouk ◽  
Nirmal Adhikari ◽  
Hytham Elbohy ◽  
Ashim Gurung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document