Packaging MEM Sensor Arrays

1999 ◽  
Vol 605 ◽  
Author(s):  
T. F. Marinis ◽  
D. A. Fulginiti ◽  
H. G. Clausen

AbstractMany applications of MEM sensors require hermetic or high vacuum packaging of sensor clusters. For example, multiple gyroscopes or accelerometers are fabricated on a single chip to improve alignment and stability of input axes or increase the dynamic range of instruments. Chemical sensors are fabricated as large arrays to both improve selectivity and increase the number of species that can be detected. Still larger arrays of sensors must be packaged for hydrophone and bolometer imaging devices. All of these applications place a demanding combination of requirements on the sensor package. The electrical outputs of the sensor array must be well isolated from each other as well as power and excitation signals, while parasitic capacitance is minimized. The package must also be capable of being evacuated and sealed to achieve a pressure of 5 millitorr with a leakage rate below 10−11 [Std cc sec−l]. Finally, the package must be compact and low cost to realize these same attributes of the MEM sensor. This paper describes a packaging approach that is based on low temperature cofired ceramic materials. This technology meets the packaging requirements of sensor arrays and is well suited to the research environment in which the sensor design is continually evolving.

Sensor Review ◽  
2015 ◽  
Vol 35 (1) ◽  
pp. 106-115 ◽  
Author(s):  
Alif Syarafi Mohamad Nor ◽  
Mohd Amri Md Yunus ◽  
Sophan Wahyudi Nawawi ◽  
Sallehuddin Ibrahim ◽  
Mohd Fua'ad Rahmat

Purpose – The purpose of this study is to determine the contamination level in natural water resources because the tremendous development in the agriculture sector has increased the amount of contamination in natural water sources. Hence, the water is polluted and unsafe to drink. Design/methodology/approach – Three types of sensor arrays were suggested: parallel, star and delta. The simulation of all types of sensor array was carried out to calculate the sensors’ impedance value, capacitance and inductance during their operation to determine the best sensor array. The contamination state was simulated by altering the electrical properties values of the environmental domain of the model to represent water contamination. Findings – The simulation results show that all types of sensor array are sensitive to conductivity, σ, and permittivity, ɛ (i.e. contaminated water). Furthermore, a set of experiments was conducted to determine the relationship between the sensor’s impedance and the water’s nitrate and sulphate contamination. The performance of the system was observed where the sensors were tested, with the addition of distilled water with different concentrations of potassium nitrate and potassium sulphate. The sensitivity of the developed sensors was evaluated and the best sensor was selected. Practical implications – Based on the outcomes of the experiments, the star sensor array has the highest sensitivity and can be used to measure nitrate and sulphate contaminations in water. Originality/value – The star sensor array presented in this paper has the potential to be used as a useful low-cost tool for water source monitoring.


2020 ◽  
Vol 10 (9) ◽  
pp. 3176
Author(s):  
Jiancheng Liu ◽  
Feng Shi ◽  
Yecheng Sun ◽  
Peng Li

The Mills Cross sonar sensor array, achieved by the virtual element technology, is one way to build a low-complexity and low-cost imaging system while not decreasing the imaging quality. This type of sensor array is widely investigated and applied in sensor imaging. However, the Mills Cross array still holds some redundancy in sensor spatial sampling, and it means that this sensor array may be further thinned. For this reason, the Almost Different Sets (ADS) method is proposed to further thin the Mills Cross array. First, the original Mills Cross array is divided into several transversal linear arrays and one longitudinal linear array. Secondly, the Peak Side Lobe Level (PSLL) of each virtual linear array is estimated in advance. After the ADS parameters are matched according to the thinned ratio of the expectant array, all linear arrays are thinned in order. In the end, the element locations in the thinned linear array are used to determine which elements are kept or discarded from the original Mills array. Simulations demonstrate that the ADS method can be used to thin the Mills array and to further decrease the complexity of the imaging system while retaining beam performance.


Author(s):  
Brian R. Smith ◽  
Cristina Amon

The responsivity, sensitivity (signal-to-noise ratio), and cross talk of pyroelectric infrared sensor arrays are directly related to the thermal performance of the interconnect between sensor elements and readout electronics. Conventional low-cost designs, employing a film of sensor material like polyvinylidenefluoride (PDVF) layered on top of a silicon substrate, function by reading the electronic signal generated in the sensor when infrared radiation causes the sensor to heat up proportional to the radiation intensity. However, the change in temperature of the sensor material, and therefore signal generated, is highly dependent on the thermal properties of the interconnect material between the sensor and silicon substrate. A numerical framework for evaluating the effect of thermal conductivity and specific heat on sensor responsivity, sensitivity, and cross talk is developed. This allows us to analyze the relationships between feature size, thermal properties, and system performance. Using this model, a selection of materials from epoxies and other conventional solutions to emerging material systems such as nanoporous silica (aerogel) can be analyzed. Aerogel is most interesting since its thermal properties are 1–3 orders-of-magnitude better than conventional interconnect materials. Recent developments have also shown its compatibility with low-cost microelectronics fabrication and packaging techniques. The numerical model illustrates the potential of highly miniaturized pyroelectric infrared sensor arrays that have comparable performance at dramatically lower fabrication cost compared to conventional infrared sensor array technology.


2019 ◽  
Vol 11 (22) ◽  
pp. 2836-2854 ◽  
Author(s):  
Mohammed Awad Abedalwafa ◽  
Yan Li ◽  
Chunfang Ni ◽  
Lu Wang

The colorimetric sensor array has become a good candidate for the detection of antibiotics due to its ease of use, convenience and low cost.


2020 ◽  
Vol 3 (4) ◽  
pp. 42
Author(s):  
Albert Sabban

The development of compact passive and active wearable circular patch metamaterials antennas for communication, Internet of Things (IoT) and biomedical systems is presented in this paper. Development of compact efficient low-cost wearable antennas are one of the most significant challenges in development of wearable communication, IoT and medical systems. Moreover, the advantage of an integrated compact low-cost feed network is attained by integrating the antenna feed network with the antennas on the same printed board. The efficiency of communication systems may be increased by using efficient passive and active antennas. The system dynamic range may be improved by connecting amplifiers to the printed antenna feed line. Design, design considerations, computed and measured results of wearable circular patch meta-materials antennas with high efficiency for 5G, IoT and biomedical applications are presented in this paper. The circular patch antennas electrical parameters on the human body were analyzed by using commercial full-wave software. The circular patch metamaterial wearable antennas are compact and flexible. The directivity and gain of the antennas with Circular Split-Ring Resonators (CSRR) is higher by 2.5dB to 3dB than the antennas without CSRR. The resonant frequency of the antennas without CSRR is higher by 6% to 9% than the antennas with CSRR. The computed and measured bandwidth of the stacked circular patch wearable antenna with CSRR for IoT and medical applications is around 12%, for S11 lover than −6dB. The gain of the circular patch wearable antenna with CSRR is around 8dBi.


1983 ◽  
Vol 105 (1) ◽  
pp. 73-79
Author(s):  
A. A. Kudirka ◽  
R. H. Smoak

Development of ceramic receiver technology for advanced solar thermal energy applications is being pursued in order to achieve significant reductions in energy cost and increase the potential application of solar thermal energy. Basically, structural ceramics are being seriously considered for solar applications because of their high temperature capability, their nonstrategic nature, and their potential for low cost. In this paper, candidate ceramic materials for solar receivers and their characteristics are described, potentially applicable fabrication and processing methods are discussed, and their applicability and promise for solar receivers is assessed. Receiver design requirements as well as system requirements for solar applications are reviewed. Promising areas of application of ceramic receivers in the near future are also discussed. Current ceramic receiver development status and plans are described, including one receiver which has been successfully tested at gas exit temperatures of up to 1425°C.


2016 ◽  
Vol 229 ◽  
pp. 609-617 ◽  
Author(s):  
Rahim Rahimi ◽  
Manuel Ochoa ◽  
Tejasvi Parupudi ◽  
Xin Zhao ◽  
Iman K. Yazdi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document