The Application of Solid Source Diffusion in the Vertical Replacement-Gate (VRG) MOSFET

2000 ◽  
Vol 610 ◽  
Author(s):  
Sang-Hyun Oh ◽  
J.M. Hergenrother ◽  
Don Monroe ◽  
T. Nigam ◽  
F.P. Klemens ◽  
...  

AbstractWe discuss the first use of solid source diffusion (SSD) to form shallow, self-aligned SDEs in a novel device known as the Vertical Replacement-Gate (VRG) MOSFET. This is the only MOSFET ever built that combines 1) a gate length controlled precisely through a deposited film thickness, independently of lithography and etch, and 2) a high-quality gate oxide grown on a single-crystal Si channel. The use of SSD in this novel geometry allows us to transform the precise gate length control afforded by the VRG process into precise, lithography-independent channel length control. In the VRG-nMOS process, silicon nitride offset spacers separate the phosphosilicate glass (PSG) SSD dopant sources from the polysilicon gate. These offset spacers, whose critical dimensions are also controlled by film thicknesses, allow us to precisely tune the gate-source and gate-drain overlaps in order to optimize the capacitance/series resistance tradeoff. These parasitic overlap capacitances have precluded the high-frequency operation of many previous vertical MOSFETs. In this paper, we discuss the SIMS and sheet resistance characterization of shallow phosphorus junctions formed in one-dimensional SSD experiments. We will also discuss the scanning capacitance characterization of two-dimensional doping profiles of VRG-nMOSFETs with gate lengths down to 50 nm.

Author(s):  
Kazuyuki MIYAKITA ◽  
Keisuke NAKANO ◽  
Masakazu SENGOKU ◽  
Shoji SHINODA

2002 ◽  
Vol 37 (2-3) ◽  
pp. 169-175 ◽  
Author(s):  
K. Yanxiong ◽  
L. Jianmin ◽  
Z. Yugen ◽  
H. Gaofei ◽  
J. Zheng ◽  
...  

Molbank ◽  
10.3390/m1179 ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. M1179
Author(s):  
Eleftherios Halevas ◽  
Antonios Hatzidimitriou ◽  
Barbara Mavroidi ◽  
Marina Sagnou ◽  
Maria Pelecanou ◽  
...  

A novel Cu(II) complex based on the Schiff base obtained by the condensation of ortho-vanillin with gamma-aminobutyric acid was synthesized. The compounds are physico-chemically characterized by elemental analysis, HR-ESI-MS, FT-IR, and UV-Vis. The complex and the Schiff base ligand are further structurally identified by single crystal X-ray diffraction and 1H and 13C-NMR, respectively. The results suggest that the Schiff base are synthesized in excellent yield under mild reaction conditions in the presence of glacial acetic acid and the crystal structure of its Cu(II) complex reflects an one-dimensional polymeric compound. The molecular structure of the complex consists of a Cu(II) ion bound to two singly deprotonated Schiff base bridging ligands that form a CuN2O4 chelation environment, and a coordination sphere with a disordered octahedral geometry.


2021 ◽  
Author(s):  
Lei Jin ◽  
Nerea Bilbao ◽  
Yang Lv ◽  
Xiao-Ye Wang ◽  
Soltani Paniz ◽  
...  

Graphene nanoribbons (GNRs), quasi-one-dimensional strips of graphene, exhibit a nonzero bandgap due to quantum confinement and edge effects. In the past decade, different types of GNRs with atomically precise structures...


1985 ◽  
Vol 229 (3) ◽  
pp. 587-593 ◽  
Author(s):  
A R Rhoads ◽  
M Lulla ◽  
P B Moore ◽  
C E Jackson

Proteins of Mr 68 000, 34 000 and 32 000 were selectively extracted by EGTA from brain cortex. The three proteins that were extracted along with calmodulin were acidic, monomeric, and did not exhibit structural homology, as demonstrated by one-dimensional peptide mapping. The Mr-68 000 protein was purified to homogeneity and had a Stokes radius of 3.54 nm and S20,W value of 5.1S. Purified calmodulin, Mr-68 000 protein and two proteins of Mr 34 000 and Mr 32 000, interacted with the brain particulate fraction, with half-maximal binding occurring at 3.5 microM, 8.3 microM and 150 microM-Ca2+ respectively. Proteins were bound independently of each other and calmodulin. Pretreatment of the particulate fraction with trypsin prevented the Ca2+-dependent binding of calmodulin; however, the binding of the Mr-68 000 protein or the Mr−32 000 and −34 000 proteins was unaffected. The Mr-68 000 protein of bovine brain did not cross-react immunologically with Mr-67 000 calcimedin from chicken gizzard.


Sign in / Sign up

Export Citation Format

Share Document