Post-Oxidation Enhanced Diffusion of Low-Energy Implanted Boron in Ultra-Shallow P+/N Junctions Formation

2000 ◽  
Vol 610 ◽  
Author(s):  
D. Lenoble ◽  
A. Halimaoui ◽  
A. Grouillet

AbstractIn this paper, we report for the first time the effect of sacrificial oxide (sacox) on the boron diffusion in ultra-shallow P+/N junctions. It is shown that the boron diffusivity is enhanced when low energy implantations are performed through sacrificial oxide. The various experimental data lead to conclude that the Post-Oxidation Enhanced Diffusion (POED) is due to a « mirror effect » seen by the Si interstitials incoming into the sacox layer. POED occurs even for sacox as thin as 1.5 nm. From a simple model, the reflection coefficient is estimated to be about 100 % for a 2.5 nm-thick sacox.

1997 ◽  
Vol 469 ◽  
Author(s):  
M.-J. Caturla ◽  
T. Diaz de la Rubia ◽  
J. Zhu ◽  
M. Johnson

ABSTRACTWe use a kinetic Monte Carlo model to simulate the implantation of low energy Boron in Silicon, from 0.5 to 1 keV, at high doses, 1015 ions/cm2. The damage produced by each ion is calculated using UT-Marlowe, based on a binary collision approximation. During implantation at room temperature,, silicon self-interstitials, vacancies and boron interstitials are allowed to migrate and interact. The diffusion kinetics of these defects and dopants has been obtained by ab initio calculations as well as Stillinger Weber molecular dynamics. Clustering of both self-interstitials, vacancies and boron atoms is included. We also model the diffusion of the implanted dopants after a high temperature annealing in order to understand the transient enhanced diffusion (TED) phenomenon. We observe two different stages of TED During the first stage vacancies are present in the lattice together with interstitials and the diffusion enhancement is small. The second stage starts after all the vacancies disappear and gives rise to most of the final TED.


2002 ◽  
Vol 717 ◽  
Author(s):  
J. M. Jacques ◽  
L. S. Robertson ◽  
K. S. Jones ◽  
Joe Bennett

AbstractFluorine and boron co-implantation within amorphous silicon has been studied in order to meet the process challenges regarding p+ ultra-shallow junction formation. Previous experiments have shown that fluorine can reduce boron TED (Transient Enhanced Diffusion), enhance boron solubility and reduce sheet resistance. In this study, boron diffusion characteristics prior to solid phase epitaxial regrowth (SPER) of the amorphous layer in the presence of fluorine are addressed. Samples were pre-amorphized with Si+ at a dose of 1x1015 ions/cm2 and energy of 70 keV, leading to a deep continuous amorphous surface of approximately 1500 Å. After pre-amorphization, B+ was implanted at a dose of 1x1015 ions/cm2 and energy of 500 eV, while F+ was implanted at a dose of 2x1015 ions/cm2 and energies ranging from 3 keV to 9 keV. Subsequent furnace anneals for the F+ implant energy of 6 keV were conducted at 550°C, for times ranging from 5 minutes to 260 minutes. During annealing, the boron in samples co-implanted with fluorine exhibited significant enhanced diffusion within amorphous silicon. After recrystallization, the boron diffusivity was dramatically reduced. Boron in samples with no fluorine did not diffuse during SPER. Prior to annealing, SIMS profiles demonstrated that boron concentration tails broadened with increasing fluorine implant energy. Enhanced dopant motion in as-implanted samples is presumably attributed to implant knock-on or recoil effects.


1999 ◽  
Vol 568 ◽  
Author(s):  
Jinning Liu ◽  
Kevin S. Jones ◽  
Daniel F. Downey ◽  
Sandeep Mehta

ABSTRACTTo meet the challenge of achieving ultra shallow p+/n source/drain extension junctions for 0.1 Oim node devices, ultra low energy boron implant and advanced annealing techniques have been explored. In this paper, we report the extended defect and boron diffusion behavior with various implant and annealing conditions. Boron implants were performed at energies from 0.25keV to lkeV and doses of 5 × 1014 cm−2 and 1 × 1015cm−2. Subsequent anneals were carried out in nitrogen ambient. The effect of energy, dose and oxide capping on extended defect formation and enhanced dopant diffusion was examined. It was observed that a thin screen oxide layer (35Å), grown prior to implantation, reduces the concentration of dopant in the Si by a significant amount as expected. This oxide also reduces the dislocation loops in the lattice and lowers diffusion enhancement of the dopant during annealing. The final junction depth can be optimized by using a low thermal budget spike anneal in a controlled oxygen ambient.


2005 ◽  
Vol 864 ◽  
Author(s):  
F. Cayrel ◽  
D. Alquier ◽  
C. Dubois ◽  
R. Jerisian

AbstractHigh dose helium implantation followed by a suitable thermal treatment induces defects such as cavities and dislocations. Gettering efficiency of this technique for metallic impurities has been widely proved. Nevertheless, dopants, as well as point defects, interact with this defect layer. Due to the presence of vacancy type defects after helium implantation, boron diffusion can be largely influenced by such a buried layer. In this paper, we study the influence of helium induced defects on boron diffusion. The boron diffusion in presence of these defects has been analyzed as a function of different parameters such as distance between boron profile and defect layer and defect density. Our results demonstrate that the major impact known as boron enhanced diffusion can be partially or completely suppressed depending on parameters of experiments. Moreover, these results clarify the interaction of boron with extended He-induced defects.


1996 ◽  
Vol 438 ◽  
Author(s):  
A. Claverie ◽  
C. Bonafos ◽  
M. Omri ◽  
B. De Mauduit ◽  
G. Ben Assayag ◽  
...  

AbstractTransient Enhanced Diffusion (TED) of dopants in Si is the consequence of the evolution, upon annealing, of a large supersaturation of Si self-interstitial atoms left after ion bombardment. In the case of amorphizing implants, this supersaturation is located just beneath the c/a interface and evolves through the nucleation and growth of End-Of-Range (EOR) defects.For this reason, we discuss here the relation between TED and EOR defects. Modelling of the behavior of these defects upon annealing allows one to understand why and how they affect dopant diffusion. This is possible through the development of the Ostwald ripening theory applied to extrinsic dislocation loops. This theory is shown to be readily able to quantitatively describe the evolution of the defect population (density, size) upon annealing and gives access to the variations of the mean supersaturation of Si self-interstitial atoms between the loops and responsible for TED. This initial supersaturation is, before annealing, at least 5 decades larger than the equilibrium value and exponentially decays with time upon annealing with activation energies that are the same than the ones observed for TED. It is shown that this time decay is precisely at the origin of the transient enhancement of boron diffusivity through the interstitial component of boron diffusion. Side experiments shed light on the effect of the proximity of a free surface on the thermal behavior of EOR defects and allow us to quantitatively describe the space and time evolutions of boron diffusivity upon annealing of preamorphised Si layers.


1969 ◽  
Vol 24 (12) ◽  
pp. 2000-2003 ◽  
Author(s):  
H. O . Denschlag ◽  
S. M. Qaim

AbstractA simple model for a transition state configuration in low-energy fission is given. In its light the latest experimental data on mass and charge distribution and on prompt neutron evaporation are discussed.


1998 ◽  
Vol 527 ◽  
Author(s):  
M. S. Carroll ◽  
L. D. Lanzerotti ◽  
J. C. Sturm

ABSTRACTRecently, the suppression of boron diffusion due to both thermal and transient enhanced diffusion (TED) has been demonstrated through the incorporation of 0.5% substitutional carbon in the base of Si/SiGe/Si heterojunction transistor's (HBT)[1,2]. Because the devices are sensitive to diffusion on a scale less than that we can detect with SIMS, in this paper combined process and device modeling (TMA TSUPREM4 and MEDICI) are used to relate observed electrical characteristics (collector saturation currents and Early voltages) of the HBT's to boron diffusion, with a sensitivity of 20-30Å. Boron diffusivity in the SiGeC base is ~8 times slower than that of the boron diffusivity in the SiGe base without implant damage (no TED). In the case of ion implant damage in an overlying layer to cause TED the excess interstitial concentration due to ion implant damage is reduced by approximately 99% through incorporation of 0.5% substitutional carbon in the HBT SiGe bases. This demonstrates that carbon incorporation acts as an effective sink for interstitials.


1996 ◽  
Vol 439 ◽  
Author(s):  
A. Claverie ◽  
C. Bonafos ◽  
M. Omri ◽  
B. De Mauduit ◽  
G. Ben Assayag ◽  
...  

AbstractTransient Enhanced Diffusion (TED) of dopants in Si is the consequence of the evolution, upon annealing, of a large supersaturation of Si self-interstitial atoms left after ion bombardment. In the case of amorphizing implants, this supersaturation is located just beneath the c/a interface and evolves through the nucleation and growth of End-Of-Range (EOR) defects.For this reason, we discuss here the relation between TED and EOR defects. Modelling of the behavior of these defects upon annealing allows one to understand why and how they affect dopant diffusion. This is possible through the development of the Ostwald ripening theory applied to extrinsic dislocation loops. This theory is shown to be readily able to quantitatively describe the evolution of the defect population (density, size) upon annealing and gives access to the variations of the mean supersaturation of Si self-interstitial atoms between the loops and responsible for TED. This initial supersaturation is, before annealing, at least 5 decades larger than the equilibrium value and exponentially decays with time upon annealing with activation energies that are the same than the ones observed for TED. It is shown that this time decay is precisely at the origin of the transient enhancement of boron diffusivity through the interstitial component of boron diffusion. Side experiments shed light on the effect of the proximity of a free surface on the thermal behavior of EOR defects and allow us to quantitatively describe the space and time evolutions of boron diffusivity upon annealing of preamorphised Si layers.


Author(s):  
C.-L. Ng ◽  
K. A. Sallam

The deformation of laminar liquid jets in gaseous crossflow before the onset of primary breakup is studied motivated by its application to fuel injection in jet afterburners and agricultural sprays, among others. Three crossflow Weber numbers that represent three different liquid jet breakup regimes; column, bag, and shear breakup regimes, were studied at large liquid/gas density ratios and small Ohnesorge numbers. In each case the liquid jet was simulated from the jet exit and ended before the location where the experimental data indicated the onset of breakup. The results show that in column and bag breakup, the reduced pressures along the sides of the jet cause the liquid to move to the sides of the jet and enhance the jet deformation. In shear breakup, the flattened upwind surface pushes the liquid towards the two sides of the jet and causing the gaseous crossflow to separate near the edges of the liquid jet thus preventing further deformation before the onset of breakup. It was also found out that in shear breakup regime, the liquid phase velocity inside the liquid jet was large enough to cause onset of ligament formation along the jet side, which was not the case in the column and bag breakup regimes. In bag breakup, downwind surface waves were observed to grow along the sides of the liquid jet triggered a complimentary experimental study that confirmed the existence of those waves for the first time.


Sign in / Sign up

Export Citation Format

Share Document