Impurity Activation in N+ Ion-Implanted 6H-SiC with Pulsed Laser Annealing Method

2000 ◽  
Vol 640 ◽  
Author(s):  
O. Eryu ◽  
K. Aoyama ◽  
K. Abe ◽  
K. Nakashima

ABSTRACTWe have succeeded in pulsed laser annealing of N+ ion-implanted n-type 6H-SiC for increasing the carrier density near surface in order to decrease contact resistance, which induces little redistribution of implanted impurities after laser irradiation. By repeated laser irradiation at low energy density, the ion–implanted impurities were electrically activated without melting the surface region. SiC substrates with impurity concentration of 2×1018 /cm3 were implanted with 30 keV N+ ions with dose of 4.7×1013/cm2. After pulsed laser annealing, a contact resistance was measured to be 5.7×10−5 Ωcm2 using Al electrode on the N+ -implanted layer.

1983 ◽  
Vol 23 ◽  
Author(s):  
G. E. Jellison ◽  
R. F. Wood

ABSTRACTIt has recently been shown that the front surface region of the silicon lattice is severely strained during pulsed laser irradiation. This uniaxial strain reduces the symmetry of the front surface region, resulting in additional shifts and splittings of the phonon frequency and changes in the Raman scattering tensor. It is shown that, for the case of pulsed laser irradiation, the phonon frequency is increased, and the 3-fold degenerate optical phonon is split into a singlet and a doublet. The changes in the Raman scattering tensor make it non-symmetric, and generally invalidate the technique used by Compaan et al. to determine the cross section experimentally. The complications introduced by the presence of stress during pulsed laser annealing, coupled with the temperature dependence of the optical and Raman tensors, make a simple interpretation of the Stokes to anti-Stokes ratio in terms of lattice temperature extremely unreliable.


1979 ◽  
Author(s):  
Kouichi Murakami ◽  
Kenji Gamo ◽  
Susumu Namba ◽  
Mitsuo Kawabe ◽  
Yoshinobu Aoyagi ◽  
...  

1981 ◽  
Vol 4 ◽  
Author(s):  
Douglas H. Lowndes ◽  
Bernard J. Feldman

ABSTRACTIn an effort to understand the origin of defects earlier found to be present in p–n junctions formed by pulsed laser annealing (PLA) of ion implanted (II) semiconducting GaAs, photoluminescence (PL) studies have been carried out. PL spectra have been obtained at 4K, 77K and 300K, for both n–and p–type GaAs, for laser energy densities 0 ≤ El ≤ 0.6 J/cm2. It is found that PLA of crystalline (c−) GaAs alters the PL spectrum and decreases the PL intensity, corresponding to an increase in density of non-radiative recombination centers with increasing El. The variation of PL intensity with El is found to be different for n– and p–type material. No PL is observed from high dose (1 or 5×1015 ions/cm2 ) Sior Zn-implanted GaAs, either before or after laser annealing. The results suggest that the ion implantation step is primarily responsible for formation of defects associated with the loss of radiative recombination, with pulsed annealing contributing only secondarily.


1979 ◽  
Vol 7 (2) ◽  
pp. 152-160
Author(s):  
Kouichi MURAKAMI ◽  
Eiji IKAWA ◽  
A. H. ORABY ◽  
Kenji GAMO ◽  
Susumu NAMBA ◽  
...  

1980 ◽  
Vol 1 ◽  
Author(s):  
W. R. Wampler ◽  
D. M. Follstaedt ◽  
P. S. Peercy

ABSTRACTPulsed ruby laser irradiation of unimplanted single crystal and implanted polycrystalline Al has been studied with ion beam analysis and TEM. The results show that Al is melted to a depth of ∼ 0.9 μm with a 4.2 J/cm2 , 15 nsec pulse, and that vacancies are quenched into Al during resolidification. Diffusion of Zn in liquid Al is observed, and a melt time of ∼ 65 nsec is estimated for a 3.8 J/cm2, 30 nsec pulse. The observations are in reasonable agreement with calculations of sample temperature and melt times. We observe no precipitation of AlSb in liquid Al for Sbimplanted Al, and conclude that the nucleation time satisfies 50 nsec ≲ tnuc ≲ 200 nsec. We find no evidence for amorphous Al after irradiation of single crystal Al with energies ≳ 1.5 J/cm2.


1981 ◽  
Vol 4 ◽  
Author(s):  
B. C. Larson ◽  
C. W. White ◽  
T. S. Noggle ◽  
J. F. Barhorst ◽  
D. Mills

ABSTRACTSynchrotron x-ray pulses have been used to make nanosecond resolution time-resolved x-ray diffraction measurements on silicon during pulsed laser annealing. Thermal expansion analysis of near-surface strains during annealing has provided depth dependent temperature profiles indicating >1100°C temperatures and diffraction from boron implanted silicon has shown evidence for near-surface melting. These results are in qualitative agreement with the thermal melting model of laser annealing.


1979 ◽  
Author(s):  
J. Stephen ◽  
B. J. Smith ◽  
N. G. Blamires

Nanoscale ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 2238-2248 ◽  
Author(s):  
J. Narayan ◽  
A. Bhaumik ◽  
R. Sachan ◽  
A. Haque ◽  
S. Gupta ◽  
...  

We report a pulsed laser annealing method to convert carbon fibers and nanotubes into diamond fibers under ambient conditions.


1986 ◽  
Vol 74 ◽  
Author(s):  
J. H. Perepezko ◽  
D. M. Follstaedt ◽  
P. S. Peercy

AbstractPulsed laser melting of the low-temperature σ (tetragonal, D8b) phase has been used to generate a liquid undercooled with respect to the melting point of the higher-temperature, equilibrium α (bcc) solid solution in equiatomic Fe-V alloys. From calculations based on reported thermodynamic data and equilibrium transformation temperatures, the metastable melting point of the σ phase is about 1720 K for an Fe-50 at.% V alloy, which is 54 K below the melting temperature of the α phase. During rapid heating of well-annealed σ-phase material with a 30 ns laser pulse to above melt threshold, the σ → α reaction is suppressed, so that the melt zone is undercooled by ∼ 54 K with respect to the equilibrium α phase. The α phase nucleates from the undercooled molten surface layer and is retained during the subsequent rapid cooling (∼ 1010 K/s) because of the relatively sluggish α → σ transformation. X-ray diffraction (Read camera) and TEM identified the α phase in the near-surface after melting σ with incident laser energies (1.0–1.41 J/cm2) which are well above the melt threshold as determined by changes in reflectivity (∼ 0.7 J/cm2). The α phase nucleated from the undercooled liquid within ∼ 20 ns.


Sign in / Sign up

Export Citation Format

Share Document