Phase Selection During Pulsed Laser Annealing of Fe-V Alloys

1986 ◽  
Vol 74 ◽  
Author(s):  
J. H. Perepezko ◽  
D. M. Follstaedt ◽  
P. S. Peercy

AbstractPulsed laser melting of the low-temperature σ (tetragonal, D8b) phase has been used to generate a liquid undercooled with respect to the melting point of the higher-temperature, equilibrium α (bcc) solid solution in equiatomic Fe-V alloys. From calculations based on reported thermodynamic data and equilibrium transformation temperatures, the metastable melting point of the σ phase is about 1720 K for an Fe-50 at.% V alloy, which is 54 K below the melting temperature of the α phase. During rapid heating of well-annealed σ-phase material with a 30 ns laser pulse to above melt threshold, the σ → α reaction is suppressed, so that the melt zone is undercooled by ∼ 54 K with respect to the equilibrium α phase. The α phase nucleates from the undercooled molten surface layer and is retained during the subsequent rapid cooling (∼ 1010 K/s) because of the relatively sluggish α → σ transformation. X-ray diffraction (Read camera) and TEM identified the α phase in the near-surface after melting σ with incident laser energies (1.0–1.41 J/cm2) which are well above the melt threshold as determined by changes in reflectivity (∼ 0.7 J/cm2). The α phase nucleated from the undercooled liquid within ∼ 20 ns.

1981 ◽  
Vol 4 ◽  
Author(s):  
B. C. Larson ◽  
C. W. White ◽  
T. S. Noggle ◽  
J. F. Barhorst ◽  
D. Mills

ABSTRACTSynchrotron x-ray pulses have been used to make nanosecond resolution time-resolved x-ray diffraction measurements on silicon during pulsed laser annealing. Thermal expansion analysis of near-surface strains during annealing has provided depth dependent temperature profiles indicating >1100°C temperatures and diffraction from boron implanted silicon has shown evidence for near-surface melting. These results are in qualitative agreement with the thermal melting model of laser annealing.


2000 ◽  
Vol 640 ◽  
Author(s):  
O. Eryu ◽  
K. Aoyama ◽  
K. Abe ◽  
K. Nakashima

ABSTRACTWe have succeeded in pulsed laser annealing of N+ ion-implanted n-type 6H-SiC for increasing the carrier density near surface in order to decrease contact resistance, which induces little redistribution of implanted impurities after laser irradiation. By repeated laser irradiation at low energy density, the ion–implanted impurities were electrically activated without melting the surface region. SiC substrates with impurity concentration of 2×1018 /cm3 were implanted with 30 keV N+ ions with dose of 4.7×1013/cm2. After pulsed laser annealing, a contact resistance was measured to be 5.7×10−5 Ωcm2 using Al electrode on the N+ -implanted layer.


1985 ◽  
Vol 51 ◽  
Author(s):  
J. H. Perepezko ◽  
D. M. Follstaedt ◽  
P. S. Peercy

ABSTRACTManganese has four allotropes with an equilibrium melting point of the high temperature δ-phase at 1517 K and calculated metastable melting points for the ϒ, β and α phases at 1501 K, 1481 K and 1395 K, respectively. Our observations for Mn irradiated with a pulsed laser and supporting estimates of maximum allotropic transition rates indicate that transformations between allotropes are suppressed during heating with ~ 25 ns laser pulses, as well as during subsequent cooling. Upon pulsed heating of β-Mn to the melt threshold, the melt is undercooled 122 K below the δ-Mn melting point. For incident laser pulse energy densities near the melting threshold, resolidification involves regrowth of β-Mn from the substrate. At energy densities well above threshold, the ϒ-Mn phase forms by separate nucleation and growth from the undercooled melt, and is retained upon rapid solidification. From these results and analyses, we conclude that significant melt undercooling, which may exceed 100 K, can occur during pulsed laser melting of metallic crystals and that the resulting crystalline structure is determined by both thermodynamics and nucleation kinetics.


2004 ◽  
Vol 362 (1-2) ◽  
pp. 282-286 ◽  
Author(s):  
D. Klinger ◽  
J. Auleytner ◽  
D. Żymierska ◽  
L. Nowicki

1986 ◽  
Vol 48 (5) ◽  
pp. 338-340 ◽  
Author(s):  
D. M. Follstaedt ◽  
P. S. Peercy ◽  
J. H. Perepezko

1983 ◽  
Vol 13 ◽  
Author(s):  
B. C. Larson ◽  
C. W. White ◽  
T. S. Noggle ◽  
J. F. Barhorst ◽  
D. M. Mills

ABSTRACTNear surface temperatures and temperature gradients have been studied in silicon during pulsed laser annealing. The investigation was carried out using nanosecond resolution x-ray diffraction measurements made at the Cornell High Energy Synchrotron Source. Thermal-induced-strain analyses of these real-time, extended Bragg scattering measurements have shown that the lattice temperature reached the melting point during 15 ns, 1.1–1.5 J/cm2 ruby laser pulses and that the temperature of the liquid-solid interface remained at that temperature throughout the high reflectivity phase, after which time the surface temperature subsided rapidly. The temperature gradients below the liquid-solid interface were found to be in the range of 107°C/cm.


Micro ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-22
Author(s):  
Shao Qi Lim ◽  
James S. Williams

Over four decades ago, pulsed-laser melting, or pulsed-laser annealing as it was termed at that time, was the subject of intense study as a potential advance in silicon device processing. In particular, it was found that nanosecond laser melting of the near-surface of silicon and subsequent liquid phase epitaxy could not only very effectively remove lattice disorder following ion implantation, but could achieve dopant electrical activities exceeding equilibrium solubility limits. However, when it was realised that solid phase annealing at longer time scales could achieve similar results, interest in pulsed-laser melting waned for over two decades as a processing method for silicon devices. With the emergence of flat panel displays in the 1990s, pulsed-laser melting was found to offer an attractive solution for large area crystallisation of amorphous silicon and dopant activation. This method gave improved thin film transistors used in the panel backplane to define the pixelation of displays. For this application, ultra-rapid pulsed laser melting remains the crystallisation method of choice since the heating is confined to the silicon thin film and the underlying glass or plastic substrates are protected from thermal degradation. This article will be organised chronologically, but treatment naturally divides into the two main topics: (1) an electrical doping research focus up until around 2000, and (2) optical doping as the research focus after that time. In the first part of this article, the early pulsed-laser annealing studies for electrical doping of silicon are reviewed, followed by the more recent use of pulsed-lasers for flat panel display fabrication. In terms of the second topic of this review, optical doping of silicon for efficient infrared light detection, this process requires deep level impurities to be introduced into the silicon lattice at high concentrations to form an intermediate band within the silicon bandgap. The chalcogen elements and then transition metals were investigated from the early 2000s since they can provide the required deep levels in silicon. However, their low solid solubilities necessitated ultra-rapid pulsed-laser melting to achieve supersaturation in silicon many orders of magnitude beyond the equilibrium solid solubility. Although infrared light absorption has been demonstrated using this approach, significant challenges were encountered in attempting to achieve efficient optical doping in such cases, or hyperdoping as it has been termed. Issues that limit this approach include: lateral and surface impurity segregation during solidification from the melt, leading to defective filaments throughout the doped layer; and poor efficiency of collection of photo-induced carriers necessary for the fabrication of photodetectors. The history and current status of optical hyperdoping of silicon with deep level impurities is reviewed in the second part of this article.


1978 ◽  
Vol 14 (4) ◽  
pp. 85 ◽  
Author(s):  
S.S. Kular ◽  
B.J. Sealy ◽  
K.G. Stephens ◽  
D.R. Chick ◽  
Q.V. Davis ◽  
...  

Author(s):  
Natalia Volodina ◽  
Anna Dmitriyeva ◽  
Anastasia Chouprik ◽  
Elena Gatskevich ◽  
Andrei Zenkevich

Sign in / Sign up

Export Citation Format

Share Document